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Abstract 20 

Microbial consortia are fascinating yet barely understood biological systems with an elusive 21 

intrinsic complexity. Studying microbial consortia and the interactions of their members is of 22 

major importance for the understanding, engineering and control of synthetic and natural 23 

microbial consortia. Microfluidic cultivation and analysis devices are versatile tools for the study 24 

of microbial interactions on a single-cell level. While there is a vast amount of literature on 25 

microfluidics for the investigation of monocultures only few studies on co-cultures have been 26 

developed in this context. Here we give an overview of different microfluidic single-cell 27 

cultivation tools for the analysis of microbial consortia with a focus on their physiology, growth 28 

dynamics and cellular interactions. Finally, central challenges and perspectives for the future 29 

application of microfluidic tools for microbial consortia investigations will be given. 30 

  31 
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Introduction 32 

Unraveling microbial interactions is of utmost importance for understanding, engineering and 33 

controlling natural and synthetic microbial consortia [1]. For instance, microorganisms play key 34 

roles in the human gut for food digestion and as a cause of diverse diseases [2,3]. Moreover, 35 

they are important for diverse environmental processes such as natural decomposition of 36 

organic matter [1] and are essential producer organisms in biotechnology [4].  37 

An improved understanding of consortia can be gained by either the analysis of naturally 38 

occurring consortia [5] or the analysis of artificial/selected consortia members or simplified 39 

synthetic consortia  (Figure 1A)[6]. Different analytical methods are available for their analysis 40 

(Figure 1B)[7]. They range from optical methods such as optical density measurements [8], 41 

cell plating [9,10], flow cytometry (FC) and fluorescence activated cell sorting (FACS) [11,12] 42 

to different “omics” methods such as metabolomics, transcriptomics as well as metagenomics. 43 

In recent years, novel microfluidic methods complemented the portfolio for the investigation of 44 

microbial consortia (Figure 1B)[7,13].  45 

Classical optical density measurements are easy to use for bulk average measurements of 46 

monocultures, but are of limited use in mixed cultures as different strains cannot be 47 

distinguished by simple light absorption [8]. Plating is a laborious method with a low time 48 

resolution and therefore not useful for growth dynamic analyses [9,10]. FC is frequently used 49 

to investigate population dynamics within mixed culture processes [11,12]. Multi-”Omics”  50 

technologies are applied to understand metabolic processes within consortia, but still often 51 

lack the ability to perform subpopulation analysis. Metagenomics are used for understanding 52 

natural consortia by identifying consortia strains in “microbial dark matter”, but the study of 53 

individual microbiome members is challenging [7,13,14].  54 

Recently novel microfluidic methods were developed and applied for the analysis of microbial 55 

consortia. These devices offer the analysis of single-cell dynamics with full spatio-temporal 56 

resolution, defined and controllable environmental conditions (physical, biological and 57 

chemical stimuli) in a high-throughput manner [15,16]. Additionally, microfluidic fabrication 58 

methods enable the fabrication of diverse geometries which can mimic natural habitats [17] or 59 

give insights into the formation of biofilms [18,19].  60 

In combination, all these methods allow an improved understanding of growth dynamics, 61 

heterogeneity, culture stability, spatial organization etc. in mixed cultures (Figure 1C). 62 

Consequently, this knowledge can then be used to control and engineer natural and synthetic 63 

consortia [20]. 64 
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Microfluidic systems for studying microbial consortia 75 

Classical cultivation and analysis methods provide only limited information about interactions 76 

inside consortia. One milestone in cultivating bacteria from environmental samples was the 77 

development of the ichip [21]. This microfluidic tool facilitates the cultivation of previously 78 

unculturable bacteria inside microwells allowing the cells to exchange metabolites with their 79 

natural consortium in situ. After cultivation, offline analysis such as colony count or 80 

metagenomics of the grown microcolonies gives an insight into the population composition 81 

[21,22]. In an alternative approach, the influence of surface topography in biofilm formation 82 

was studied by Bhattacharjee et al. [23]. Different micro-patterned surfaces were developed 83 

for the creation of biofilms to analyze antibiotic susceptibility in an Escherichia coli and 84 

Pseudomonas aeruginosa consortium. For further information regarding artificial microfluidic 85 

habitats for microbial consortia, the reader is referred to a recent review by Wondraczek and 86 

co-workers, discussing artificial microbial arenas for microbial consortia [24]. For recent 87 

literature focusing on microfluidic systems for the investigation of complex community behavior 88 

especially in soil the reader is referred Stanley et al. and Aleklett et al. [25,26]. 89 

Both, for the understanding of natural communities as well as for development of synthetic 90 

cultures detailed understanding of a consortium’s physiology, especially of interactions 91 

between consortia members and their growth dynamics, is of interest. As a result, first 92 

microfluidic tools were applied for the study of cell-cell-interactions and growth dynamics of 93 

mixed cultures as well as their individual members. In this review we will focus on systems 94 

allowing the study of microbial consortia dynamics and interactions with single-cell resolution 95 

[27–29]. For microfluidic systems investigating e.g. the physiology within monocultures or 96 

interactions within isogenic colonies (e.g. growth, heterogeneity) and behavior (e.g. 97 

chemotaxis, quorum sensing) the reader is referred to existing reviews such as Grünberger et 98 

al. and Fritzsch et al. [16,30]. 99 

  100 
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Microfluidic setups for cell-cell interaction studies  101 

An overview on published microfluidic systems applied for cultivations of microbial consortia is 102 

given in Figure 2. These systems can be divided into four main categories based on the 103 

microfluidic cultivation chamber geometry and spatially arrangement of cells. The geometry of 104 

microfluidic cultivation devices directly influences the cell physiology as it restricts the spatial 105 

degree of freedom for cell growth. In terms of cellular resolution, microfluidic cultivations can 106 

either be performed on the population level in 3D environments (Figure 2 A, B) or on the single-107 

cell level with a 2D, 1D or 0D spatial degree of freedom (Figure 2 C, D). Additionally, cells 108 

within a consortium can have direct cell contact (Figure 2 A, C) or indirect contact through 109 

porous membranes which are only permeable for metabolites, e.g. signaling molecules (Figure 110 

2 B, D).  111 

Droplet microfluidic systems or 3D habitats in form of connected microwells are the most 112 

frequently applied tools to study microbial consortia (Figure 2 A)[31–35]. These systems allow 113 

for the cultivation of two or more species in a closed cultivation area and are often applied for 114 

screening and subpopulation studies [36]. Especially for the investigation of  population 115 

dynamics microwells are frequently applied [33]. The throughput and temporal resolution of 116 

microwell and droplet systems are relatively high, while the handling is comparatively simple. 117 

However, the 3D cultivation chamber are not optimal for microscopic analysis and these 118 

systems mostly lack any environmental control. For the use of morphologically similar strains 119 

fluorescence labelling is necessary, making it impractical for quantitative interaction studies of 120 

mixed cultures. 121 

The exchange of metabolites within mixed cultures is often based on secretion of molecules 122 

and diffusive transport between cells. This behavior can be considered in microfluidic designs 123 

by the separation of cells through membrane or membrane-like structures (Figure 2B)[37]. 124 

Alternatively, cells can be separated in solid, but porous systems such as hydrogels for 125 

modelling natural habitats and studying spatial organization of consortia [38]. For both systems 126 

analysis and environmental control is difficult and the throughput is limited. 127 

Cultivation with full single-cell resolution may be the most favorable method in terms of analysis 128 

(mostly image analysis), environmental control and temporal resolution (Figure 2 C, D)[39–129 

41]. Microfluidic devices are ideal to investigate cell-cell contact based interactions of 130 

population growth dynamics on the single-cell level. The implementation of a spatial separation 131 

of cells improves the versatility of these systems in terms of cultivation control, especially for 132 

the investigation of unknown metabolic interactions (Figure 2D). Membranes [42] or porous 133 

agarose [43] allow the exchange of metabolites via diffusion between different cells/cell 134 

colonies, while preventing direct cell-cell contact. Combined with live cell imaging, the 135 





Burmeister and Grünberger                                                        Microfluidics to study microbial interactions 

8 

 

Investigation of microbial cell-cell interactions 148 

Understanding microbial cell-cell interactions is the key for understanding and controlling 149 

mixed cultures in nature, medicine and biotechnology [45]. Table 1 gives an overview of 150 

microfluidic systems used for the investigation of microbial interactions published in the last 151 

years. Applications include the investigation of quorum sensing [39,46–48], cross-feeding 152 

dynamics [9,37,38,42–44,49], and predator-prey as well as habitat competition dynamics 153 

[31,33]. 154 

Vliet et al. applied an array of microwells (100x100x5 µm³) which were connected by narrow 155 

channels to study the migration behavior of two different E. coli strains (Figure 3A)[33]. 156 

Different fluorescence labelling allowed to monitor their competing colonization of the array. 157 

The cultivation of a three-strain consortium in microwells was described by Kim et al. (Figure 158 

3B)[37]. Cells inoculated in microwells were spatially separated but could communicate 159 

through a communication channel, that was separated from the microwells with a membrane 160 

on the bottom of the wells. The authors could show that the distance between the wells had a 161 

vital influence on the stability and survival of the consortium. A similar setup was applied by 162 

Nagy et al. for the study of quorum sensing between two different E. coli strains [47]. 163 

Chen et al. presented a system for the analysis of direct cell-cell contact with single-cell 164 

resolution (Figure 3C)[39]. Cells were continuously supplied with medium via adjacent deeper 165 

medium channels. Fluorescence coupled oscillating gene circuits in two E. coli strains were 166 

used to observe cellular interaction in microfluidic 2D cultivation chambers. Oscillating gene 167 

circuits in E. coli were recently also studied in a comparable setup by Alnahhas et al. [40]. 168 

Similar setups were used to investigate gene transfer via conjugation between different strains 169 

[42,50]. 170 

Burmeister et al. developed a 2D cultivation system with spatially separated cultivation 171 

chambers (Figure 3 D)[42]. Here, strains were separated by a sieve structure and growth was 172 

restricted to a monolayer in several parallel arranged cultivation chambers. The sieve structure 173 

allowed exchange of metabolites via diffusion. This was verified by co-cultivation of a lysine 174 

producing Corynebacterium glutamicum with a lysine auxotrophic C. glutamicum. Adjacent 175 

fluid channels allowed constant and controllable environmental conditions. A similar setup, but 176 

with a nano-cellulose filter between the chamber compartments, was developed by Osmekhina 177 

et al. to study quorum sensing based interactions in E. coli [51]. 178 

These examples demonstrate that microfluidic single-cell tools can be used to investigate a 179 

wide range of microbial cell-cell interactions of mixed microbial consortia and lay the foundation 180 

for systematic studies of interactions such as crossfeeding interactions and quorum sensing. 181 
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[37] Copyright 2008 National Academy of Sciences. [42] Reproduced by permission of The Royal 192 

Society of Chemistry. 193 

Investigation of microbial interaction with higher 194 

organisms  195 

Interactions in natural communities can also be found between different species [52]. This 196 

includes for example bacterial-fungal [53], bacterial-mammalian [54,55] and bacterial-plant 197 

interactions [56] (Figure 4). Different microfluidic proof-of-concept systems have successfully 198 

been developed and applied.  199 

A PDMS-based device for investigation of bacterial-fungal interactions was developed by 200 

Stanley et al. (Figure 4A)[53]. For the observation of interactions, hyphal growth was restricted 201 

to one plane inside a shallow cultivation channel. With this system an antagonistic behavior of 202 

Bacillus subtilis towards Coprinopsis cinerea was identified. In the presence of a B. subtilis 203 

wildtype strain growth of the fungus was inhibited. 204 

Hong and colleagues established a device which revealed that bacterial cells are more 205 

attracted to cancer cells than to normal cells (Figure 4B)[54]. In their device a central fluid 206 

channel with Salmonella typhimurium was connected via collagen filled chambers to cultivation 207 

chambers for normal mammalian cells and cancer cells. Bacterial cell migration was triggered 208 

by chemical stimuli that could diffuse through the collagen and most bacterial cells migrated 209 

towards the cancer cell side. 210 

Ellett and co-workers have developed a microfluidic assay for the investigation of antimicrobial 211 

activity of neutrophils against pathogens like Staphylococcus aureus (Figure 4C)[55]. They 212 

implemented an array of several round microchambers (200 µm diameter x 50 µm height) in 213 

which growth of both cell types could be observed. Different ratios of S. aureus and neutrophils 214 

as well as E. coli and neutrophils were observed on the single-cell level. The success or failure 215 

of the immune cells depending on the cell density and ratio was analyzed. 216 

A detailed investigation of bacterial-root association was realized with a microfluidic tracking 217 

root system (TRIS) by Massalha et al. (Figure 4D)[56]. TRIS had several parallel arranged fluid 218 

channels with a height of 160 µm and three inlet holes each. Here, bacteria cells and plant 219 

roots were cultivated within several cultivation channels, allowing direct cell-cell contact 220 

between both species. Cultivation experiments revealed that B. subtilis always accumulated 221 

very fast near the root elongation zone of Arabidopsis thaliana forming a dense biofilm around 222 

the root tip. 223 
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direct cell-cell contact [53]. (B) Bacterial-eukaryotic interaction: Normal hepatocytes, cancer 231 

hepatocytes and S. typhimurium were spatially separated by collagen gel. Bacteria were 232 

attracted to cancer cells side [54]. (C) Bacterial-eukaryotic interaction: Human neutrophils 233 

entered microchambers filled with S. aureus and attacked the pathogen [55]. (D) Bacterial-234 

plant interaction: B. subtilis was preferably attracted to the root tip and built up a biofilm around 235 

the whole root [56]. Images adapted, modified and reprinted with permission from [53–56]. 236 

 237 

Current challenges and future perspectives 238 

Several technical challenges need to be tackled to fully realize the benefits of microfluidic tools 239 

for the analysis of microbial consortia: (i) overcoming material limitations to create functional 240 

cultivation devices; (ii) controllable environments; (iii) fast and reliable (image) analysis tools; 241 

and (iv) the integration of microfluidic cultivation systems into traditional analysis workflows. 242 

Many systems described here have been fabricated by photolithographic methods [57]. This 243 

restricts the fabrication to planar surfaces. Progress in technical fabrication techniques e.g. 244 

multiphoton lithography [58] and microscopy e.g. 3D confocal laser-scanning microscopy [59] 245 

will allow the fabrication and analysis of growth in flexible 3D habitats and chambers that allow 246 

the emulation of more natural habitats. Furthermore, versatility for the analysis of interactions 247 

between organisms with different morphological structures will be increased. Advancement in 248 

fabrication also enables to control and modify environmental factors in a precise and dynamic 249 

manner. Here, the methods currently developed for single-cell cultivation of monocultures 250 

serve as a blueprint for microbial consortia studies on single-cell level. This will allow to 251 

accurately emulate natural and complex environmental conditions [60,61]. 252 

Most of the demonstrated microfluidic methods presented in this paper rely on advanced image 253 

processing tools for analysis and visualisation of live-cell imaging data [62]. These tools need 254 

to be adapted for the analysis of microbial consortia to get deeper insights into microbial 255 

interactions. For fast screening of synthetic communities, color-coded droplet microfluidics in 256 

combination with optical assays can reveal growth-promoting interactions with a high 257 

throughput [63]. Alternatively, novel strategies need to be developed for reliable sampling of 258 

cells during or at the end of different microfluidic cultivations. This will shift pure image-based 259 

visualization and analysis to quantitative offline analysis with conventional protocols adjusted 260 

to a few numbers of cells [64].  261 

In future, full potential of microfluidic methods relies on the successful integration of microfluidic 262 

tools into existing working routines and methods (see Figure 1B). Both, traditional methods 263 
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and microfluidics have their own advantages and disadvantages and they can complement 264 

each other in practical applications. This can be achieved by a wise application of microfluidic 265 

technologies for questions and topics, which cannot be analyzed or are difficult to analyze with 266 

conventional methods. Examples include the dynamics within heterogeneity of single cells but 267 

also consortia behavior at defined environmental conditions. In addition to experimental data, 268 

computational modelling can help to understand complex systems. Especially for bottom-up 269 

approaches and to predict the behavior of communities with more than three strains, 270 

mathematical models may give deeper insights [65,66]. 271 

 272 

Conclusion 273 

The application of novel microfluidic single-cell cultivation systems opens up novel possibilities 274 

for qualitative and quantitative understanding of microbial interactions within synthetic and 275 

natural mixed cultures. The combination of traditional methods and microfluidic single-cell tools 276 

will improve the understanding of cell-cell interactions within mixed consortia, both on spatial 277 

and temporal scale. We are convinced that in future microfluidic tools will undoubtedly become 278 

an increasingly used tool for microbial interactions studies especially on cell phenotypes, 279 

growth dynamics and interactions occurring within microbial consortia. This will lay the 280 

foundation for an improved understanding of natural and synthetic mixed cultures but also the 281 

development and engineering of synthetic microbial consortia with application in medicine and 282 

biotechnology. 283 

  284 
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