Home > Publications database > Reversible jump MCMC for multi-model inference in metabolic flux analysis > print |
001 | 866368 | ||
005 | 20210112185708.0 | ||
024 | 7 | _ | |a 10.1093/bioinformatics/btz500 |2 doi |
024 | 7 | _ | |a 0266-7061 |2 ISSN |
024 | 7 | _ | |a 1367-4803 |2 ISSN |
024 | 7 | _ | |a 1367-4811 |2 ISSN |
024 | 7 | _ | |a 1460-2059 |2 ISSN |
024 | 7 | _ | |a altmetric:62385302 |2 altmetric |
024 | 7 | _ | |a pmid:31214716 |2 pmid |
024 | 7 | _ | |a WOS:000508116000029 |2 WOS |
037 | _ | _ | |a FZJ-2019-05524 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Theorell, Axel |0 P:(DE-Juel1)166254 |b 0 |u fzj |
245 | _ | _ | |a Reversible jump MCMC for multi-model inference in metabolic flux analysis |
260 | _ | _ | |a Oxford |c 2020 |b Oxford Univ. Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1610473360_23411 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Post-Print nicht verfügbar! |
520 | _ | _ | |a MotivationThe validity of model based inference, as used in systems biology, depends on the underlying model formulation. Often, a vast number of competing models is available, that are built on different assumptions, all consistent with the existing knowledge about the studied biological phenomenon. As a remedy for this, Bayesian Model Averaging (BMA) facilitates parameter and structural inferences based on multiple models simultaneously. However, in fields where a vast number of alternative, high-dimensional and non-linear models are involved, the BMA-based inference task is computationally very challenging.ResultsHere we use BMA in the complex setting of Metabolic Flux Analysis (MFA) to infer whether potentially reversible reactions proceed uni- or bidirectionally, using 13C labeling data and metabolic networks. BMA is applied on a large set of candidate models with differing directionality settings, using a tailored multi-model Markov Chain Monte Carlo (MCMC) approach. The applicability of our algorithm is shown by inferring the in vivo probability of reaction bidirectionalities in a realistic network setup, thereby extending the scope of 13C MFA from parameter to structural inference. |
536 | _ | _ | |a 583 - Innovative Synergisms (POF3-583) |0 G:(DE-HGF)POF3-583 |c POF3-583 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Nöh, Katharina |0 P:(DE-Juel1)129051 |b 1 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1093/bioinformatics/btz500 |g p. btz500 |0 PERI:(DE-600)1468345-3 |n 1 |p 232 - 240 |t Bioinformatics |v 36 |y 2020 |x 0266-7061 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/866368/files/btz500.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/866368/files/btz500.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |p VDB |o oai:juser.fz-juelich.de:866368 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)166254 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129051 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-583 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Innovative Synergisms |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b BIOINFORMATICS : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b BIOINFORMATICS : 2017 |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-1-20101118 |k IBG-1 |l Biotechnologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBG-1-20101118 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|