001     866370
005     20240711085550.0
024 7 _ |a 10.1002/fuce.201800198
|2 doi
024 7 _ |a 1615-6846
|2 ISSN
024 7 _ |a 1615-6854
|2 ISSN
024 7 _ |a 2128/23666
|2 Handle
024 7 _ |a WOS:000476070000001
|2 WOS
037 _ _ |a FZJ-2019-05526
082 _ _ |a 620
100 1 _ |a Opitz, A. K.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Model System Supported Impedance Simulation of Composite Electrodes
260 _ _ |a Weinheim
|c 2019
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1576592683_32427
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Current research on fuel electrodes of solid oxide cells (SOCs) is done either on model‐type pattern electrodes or by interpretation of impedance spectra measured on “real” porous paste electrodes. However, results obtained by both methods are not always straightforward to compare. To bridge this gap, in this study impedance spectra of 3D porous composite electrodes with a well‐defined geometry are simulated using elementary parameters from model‐type experiments. By independent variation of these elementary parameters, it is possible to analyze the influence of the individual elementary processes on the overall electrode performance without the issue of changing its microstructure, which usually occurs when changing materials in case of real porous electrodes. The obtained results identify the electrochemical reaction resistance as the parameter with the highest impact on the polarization resistance of porous electrodes. This study thus provides a basis for a knowledge‐based improvement of existing and novel composite fuel electrodes.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gerstl, M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bram, M.
|0 P:(DE-Juel1)129591
|b 2
773 _ _ |a 10.1002/fuce.201800198
|g p. fuce.201800198
|0 PERI:(DE-600)2054621-X
|n 4
|p 417 - 428
|t Fuel cells
|v 19
|y 2019
|x 1615-6854
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/866370/files/Opitz_et_al-2019-Fuel_Cells.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/866370/files/Opitz_et_al-2019-Fuel_Cells.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866370
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FUEL CELLS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21