000866371 001__ 866371
000866371 005__ 20240711085604.0
000866371 0247_ $$2doi$$a10.1016/j.matlet.2019.126794
000866371 0247_ $$2ISSN$$a0167-577X
000866371 0247_ $$2ISSN$$a1873-4979
000866371 0247_ $$2Handle$$a2128/24307
000866371 0247_ $$2WOS$$aWOS:000500934600024
000866371 037__ $$aFZJ-2019-05527
000866371 082__ $$a670
000866371 1001_ $$0P:(DE-HGF)0$$aJeong, H.$$b0$$eCorresponding author
000866371 245__ $$aFacile route for reactive coating of LaCrO3 on high-chromium steels as protective layer for solid oxide fuel cell applications
000866371 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2020
000866371 3367_ $$2DRIVER$$aarticle
000866371 3367_ $$2DataCite$$aOutput Types/Journal article
000866371 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581088258_25493
000866371 3367_ $$2BibTeX$$aARTICLE
000866371 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866371 3367_ $$00$$2EndNote$$aJournal Article
000866371 520__ $$aIn this study, we present a facile route for the production of thin LaCrO3 layers as a protective layer on chromium-containing steels, usually applied as a dense interconnector material for solid oxide fuel cells or porous supports for metal-supported solid oxide fuel cells. The reactive sol-gel coating method is based on dip coating in aqueous lanthanum acetate/propionate mixtures and subsequent firing. LaCrO3 is formed by a reaction between lanthanum from the coating solution and chromium from the steel. The obtained layers are thin and adhere well to the sample surface. X-ray diffraction reveals the pattern of the LaCrO3 phases. Thermogravimetric measurements show the improved oxidation resistance of LaCrO3-coated steel. Because of the easy-to-apply nature of this method and the wide range of tailoring possibilities, the reactive coating route is a viable alternative to established nitrate- or alcoholate-based wet chemical coating technologies.
000866371 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000866371 588__ $$aDataset connected to CrossRef
000866371 7001_ $$0P:(DE-HGF)0$$aRoehrens, D.$$b1
000866371 7001_ $$0P:(DE-Juel1)129591$$aBram, M.$$b2$$ufzj
000866371 773__ $$0PERI:(DE-600)1491964-3$$a10.1016/j.matlet.2019.126794$$gVol. 258, p. 126794 -$$p126794 -$$tMaterials letters$$v258$$x0167-577X$$y2020
000866371 8564_ $$uhttps://juser.fz-juelich.de/record/866371/files/1-s2.0-S0167577X19314259-main-1.pdf$$yRestricted
000866371 8564_ $$uhttps://juser.fz-juelich.de/record/866371/files/Mat%20Letters%20258_2019_126794%20Jeong%20et%20al.pdf$$yPublished on 2019-10-09. Available in OpenAccess from 2021-10-09.
000866371 8564_ $$uhttps://juser.fz-juelich.de/record/866371/files/Mat%20Letters%20258_2019_126794%20Jeong%20et%20al.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-10-09. Available in OpenAccess from 2021-10-09.
000866371 8564_ $$uhttps://juser.fz-juelich.de/record/866371/files/1-s2.0-S0167577X19314259-main-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866371 909CO $$ooai:juser.fz-juelich.de:866371$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866371 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
000866371 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b2$$kFZJ
000866371 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000866371 9141_ $$y2020
000866371 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866371 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000866371 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866371 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000866371 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER LETT : 2017
000866371 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866371 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866371 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866371 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866371 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866371 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866371 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866371 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866371 920__ $$lyes
000866371 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000866371 9801_ $$aFullTexts
000866371 980__ $$ajournal
000866371 980__ $$aVDB
000866371 980__ $$aUNRESTRICTED
000866371 980__ $$aI:(DE-Juel1)IEK-1-20101013
000866371 981__ $$aI:(DE-Juel1)IMD-2-20101013