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“We become what we behold. 
We shape our tools and then our tools shape us.”

Marshall McLuhan
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What is ML/AI?

H
ah

n 
et

. e
l, 

20
17

 M
ol

. P
sy

ch
.



www.helmholtz.de

Since 60s: so why now?

https://cs.stanford.edu/people/karpathy/cnnembed/ http://www.fz-juelich.de

Lots of data Fast computers Deep neural networks

Good
Learning
Algorithms

https://towardsdatascience.com/



www.helmholtz.de

Utopia?
Language
Emotion
Reward

Cogn. Control

We can accurately predict sex 
of a new subject from region-

wise FC profiles
(SVM, nested optimization, between-

sample prediction, N=434/310)
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Dystopia?

https://www.nytimes.com/2018/07/08/business/china-surveillance-technology.html

https://www.forbes.com/sites/cognitiveworld/2019/01/14/the-weaponization-of-artificial-intelligence/#20d4a6873686



Machine-learning to predict 
behavioral or clinical 

phenotypes from MRI-data

Knowledge on 
brain organization: 

functional neuroanatomy
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Outline

▪ Machine learning

▪ Sex classification: replication

▪ Schizophrenia sybtypes: data separation

AMLINM-7



Machine learning: why to use it?

Machine learning is not magic; it can’t get something from nothing. (Domingos, 2012)
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Patterns are often more informative than individual variables
▪ e.g. any logical function
▪ Univariate methods cannot identify those

▪ Multiple testing correction issue (lower power)

Generalizable solutions that work on unseen data
▪ Fewer false positives (not guaranteed)
▪ Predictive analytics
▪ Practical applications: e.g. clinical status/score prediction

Domingos, 2012 , A Few Useful Things to Know about Machine Learning, CACM



Machine learning

“The fundamental goal of machine learning is to generalize beyond the examples in the training set. 
This is because, no matter how much data we have, it is very unlikely that we will see those exact 
examples again at test time.” (Domingos, 2012, A Few Useful Things to Know about Machine Learning)

Model

y'Learning

Training data
S = (X, y)

y X

Test data
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Generalization



Challenge: Generalization (avoid over-fitting)

▪ The fundamental goal of machine learning is to generalize beyond the examples 
in the training set. This is because, no matter how much data we have, it is very 
unlikely that we will see those exact examples again at test time. (Domingos, 
2012)

▪ But we only one dataset!

▪ Fit on the complete data
▪ Model describes the „training“ data well 
▪ Fails to generalize on „unseen“ data

AML@INM-7



K-fold cross-validation

Estimate performance on “unseen” data

Preprocess
This becomes part of the model.
Mean-centering, Z-score, PCA etc. applied only to the training data.
The parameters should be retained and applied to the test data.

Model

Preprocess

Learn

Reprocess
+ Predict

Data
X y

Fold 1

Fold 2

Fold 1
&

Fold 2

Evaluate

Fold 3

Shuffle

Error
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Predict biological traits / clinical status using neuroimaging 
data

▪ Aim: Generalization models

▪ Aim: Interpretable results

▪ Data: Resting-state data
▪ Easy to acquire
▪ Intrinsic properties of brain function

▪ Issue: High dimensions
▪ Leads to over-fitting

AML@INM-7
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Issue 1: High dimensions

▪ Over-fitting
▪ Curse of dimensionality

▪ Results might not be interpretable

▪ … our intuitions, which come from a three-dimensional world, often do not 
apply in high-dimensional ones. (Domingos, 2012)
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Our approach

a priori feature reduction: parcel-wise or pre-defined networks

Whole-brain analysis

▪ Too many features
▪ 200 nodes: ~20,000 features
▪ #features >> #subjects

▪ Machine learning
▪ Need for feature selection
▪ Accuracy can suffer

▪ Interpretation is difficult

Parcel/Network-based analysis

▪ Reasonable number of features
▪ 200 nodes: ~200 features
▪ #features > #subjects

▪ Machine learning
▪ a priori feature selection
▪ Better predictions

▪ Interpretable results

AML@INM-7



Parcel-based classification

Parcels
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Accuracy of 
Parcel 1

Cross-validation 
analysis

Repeat for other parcels

Extract parcel-
wise 

connectivity
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Accurate prediction sex of a new subject from region-wise FC profiles
(SVM, nested optimization, between-sample prediction, N = 434 / 310)

Mapping fingerprint – phenotype relationships

Language
Emotion
Reward

Cogn. Control

AML@INM-7

BrainMap database



Cross-sample prediction: generalization check
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Weis, Patil et. al, 
Sex Classification by 
Resting State Brain 
Connectivity, 
Cerebral Cortex 2019

Sample 1 and 2 = Human Connectome Project Sample 3 = FZJ 1000 brains study

AML@INM-7

Similar performance on 
other datasets.
Solution is 
generalizable.



Issue 2: Double-dipping (limited data)

▪ Over-fitting
▪ Data-leakage

▪ Misleading results (false positives)

AML@INM-7

Clustering

Cross-validation

Feature importance
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Our approach

Two-step solution

Step 1: Symptomatology

▪ Subtypes
▪ Clinical symptom scales
▪ Factorization
▪ Clustering analysis

Step 2: Neuroimaging

▪ Resting-state data

▪ Subtypes from Step 1 

▪ Cross-validation analysis

▪ Interpretable results

AML@INM-7



Mapping fingerprint – pathology relationships
Step 1: Symptomatology  Groups

AML@INM-7

Two core phenotypical 
subtypes

Robust low-rank 
description of SCZ 
psychopathology 

from >2000 patients

Orthogonal Non-Negative 
Matrix Factorization

K-means
Gaussian Mixture Modelling



Schizophrenia subtypes and brain basis

Social Cognition
Theory of Mind

Face Perception

Reward
Reasoning

Mood induction

Regional FC profiles support 
subtype discrimination
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Chen, Patil et. al,
Neurobiological divergence of the positive and 
negative schizophrenia subtypes identified upon 
a new factor-structure of psychopathology using 
non-negative factorization: An international 
machine-learning study,
Biological Psychiatry 2019 (accepted)
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Step 2: Groups  Brain regions



Other issues

▪ Feature selection / construction
▪ “Over-optimization is root of all non-generalization”
▪ Solutions are often over-fitted

▪ Data privacy
▪ Fingerprint analysis

▪ 95% identification with high quality scan
▪ Deep networks can retain too much information

▪ … developing successful machine learning applications requires a substantial 
amount of “black art” that is difficult to find in textbooks. (Domingos, 2012)

AML@INM-7



Thank you!

Funding
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Rank Selection in Non-negative Matrix Factorization

▪ Non-Negative Matrix Factorization
▪ Powerful dimensionality reduction
▪ Rank Selection Problem

▪ Rank Selection Methods
▪ Stability vs. imputation
▪ Our proposal: MADimput

▪ Data properties impact rank selection
▪ Sparsity
▪ Intrinsic dimensionality
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Muzzarelli, Weis, Eickhoff & Patil, 
Rank Selection in Non-negative 
Matrix Factorization: Systematic 
Comparison and a New MAD Metric
IJCNN 2019
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Non-negative matrix Factorization (NMF)
Basic properties of NMF

n = features
m = observations
r = reduced components

part-based representation

interpretability

AML@INM-7



Rank selection problem
Need to find dimensionality of reduced representation

n = features
m = observations
r = reduced components

Crucial to select “best” rank 
mostly when no prior knowledge 

what is “best”
& which metric to use?

AML@INM-7



Rank selection approaches

Stability – based Imputation – based

Check 
stability of 

factor 
matrix

Perform multiple NMF 
runs at each rank

Compute 
reconstruction 

error in 
imputed 
points

Exclude random data points 
in multiple CV runs

AML@INM-7

degeneracy Calculates 
Accuracy



Our proposal: MADimput in ImputationCV

W H V

Good reconstruction, and homogeneous 
Exclude 10% data 

points

Reconstruct 
entire matrix

Compute MSE of 
CV run

Compute MAD of 
MSE across runs

AML@INM-7



Systematic evaluation
Performance comparison of 6 metrics

Stability
▪ Consensus

▪ coph - cophenetic coefficient  
▪ disp - dispersion   

▪ Stability in split-half CV
▪ aRI - adjusted Rand Index   
▪ inner - inner product

Imputation
▪ MSE - mean of MSE in CV runs

▪ MAD - MAD of MSE in CV runs

Permutation of underlying distribution

▪ perm – error slope comparison with 
permuted data



Effect of data properties
Simulated data : Manipulation sparsity + latent dimensionality

dense

sparse
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Results: Simulated data dense

Only imputation 
methods are accurate

(but struggle at low true rank)
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Results: Simulated data sparse

Imputation, permutation 
and aRI methods

have good performance,

but all struggle at higher 
rank

AML@INM-7



Real data: sources

MED5 - medical 
abstracts 

1159 terms x 124 abstracts
5 underlying human-

labelled topics

dig0246 – handwritten 
digits recognition 

64 attributes and 1520 
samples representing 

digits {0, 2, 4, 6} 
→ true rank:  4

ALL-AML – cancer 
gene expression 

5000 genes x 38 samples
2 (more?) myeloma types

AML@INM-7



Results: Real data

MADimput, aRI and
consensus methods

close to expected true 
rank

but consensus methods  
failed badly in simulated !

→ false hit for low rank ?

AML@INM-7



NMF rank selection: discussion 

▪ No method is perfect, and most are just bad
▪ No methods works best in all data type & dimensionality scenarios

▪ ImputationCV–based methods are better
▪ Imputation CV-based MSE and MAD overall more reliable
▪ MAD captures more complex properties (as expected) ?

▪ Data properties do impact rank selection
▪ Both sparsity and latent dimensionality  
▪ Tip of the iceberg ?

AML@INM-7



Multi-modal parcellation of the human striatum

▪ Most parcellation studies are based on single modality

▪ Fundamental organization convergent across modalities not known

▪ Three modalities
▪ Resting-state (RS)
▪ Probabilistic Diffusion Tractography (PDT)
▪ Structural Covariance (SC)

▪ Context-dependent-clustering (CDC, Gabasova et. al, 2017)
▪ Can cluster across contexts (i.e. modalities)
▪ Model selection based on several criteria

▪ Behavioral decoding

▪ Clinical relevance: VBM analysis Parkinson’s and Schizophrenia

AML@INM-7
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N = 324 (164 Female) Human Connectome Project



Multi-modal striatum parcellation
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Multi-modal striatum parcellation: model selection
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Multi-modal striatum parcellation: selected solution
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Multi-modal striatum parcellation: selected solution n=7

AML@INM-7

Behavioral 
decoding

PD vs. SCZ
Averaged 
Z-scores of 
GM volume



Ji Chen: SCZ study
Sample details

Characteristics PHAMOUS sample
(N=1545)

International dataset 
from 9 centers 

(N=490)

International dataset 
with imaging 

(N=147)
Statistics p-value

Demographic
Age (years)a 44.15 (11.42) 33.82 (10.28) 34.89 (11.67) 183.51 <.001
Gender (male/female) 1108/437 333/157 102/45 2.45 .292
Illness during (years)b 18.22 (10.54) 9.13 (8.98) 11.37 (10.36) 134.71 <.001

PANSS
Positivec 12.48 (4.91) 14.24 (5.76) 15.36 (5.50) 37 <.001
Negative 14.60 (6.20)

26.70 (8.16)
14.67 (7.21)

29.10 (11.34)
15.07 (6.06)

30.93 (10.97)
0.375 .687 

Generald 23.67 <.001
Illness severity (Total
PANSS)e

P3 item (hallucinations)f

53.78 (16.35)

2.30 (1.47)

58.01 (21.87)

2.66 (1.83) 

61.36 (19.57)

3.22 (1.91)

19.48

28.18

<.001

<.001

Medicationg

Atypical antipsychotics NA 167 (34.1%) 110 (74.8%)

Typical antipsychotics NA 26 (5.3%) 8 (5.4%)
Both A & T NA 16 (3.3%) 9 (6.1%)
None or unknown NA 281 (57.3%) 20 (25.9%)
Current antipsychotic 
medicationh

NA 19.64 (14.15) 19.30 (12.57)
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HCP functional imaging parameters:

Siemens 3T Skyra scanner, 1200 volumes, voxel size= 2 x 2 x 2 mm³, FoV=
208x180 mm², 72 slices, TR = 720 ms; TE= 33.1 ms, FA=52°)

• Sample 1: 434 subjects (217 males, age range: 22-37, mean age: 28.6
years),

• Sample 2: 310 subjects (155 males, age range: 22-36, mean age: 28.5
years).

1000 brains functional imaging parameters:

Siemens 3T TRIO scanner, 297 volumes, voxel size= 3.1 x 3.1 x 3.1 mm³, FoV=
200x200 mm², 36 slices, TR = 2200 ms; TE= 30 ms, FA=90°)

• Sample: 1115 subjects (508 males, age range: 18-88, mean age: 63.5 years)

Samples: sex prediction



SCZ study
Sample details

 Slide Text
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Initial sample: 131 subjects
Enhanced sample: 900+ subjects
45 publications

900 related subjects
17 publications

1,000+: Schizophrenia, Parkinson
Major Depression, Stroke
50+ publications

10,000 subjects currently
100,000 subjects final

10,000 subjects currently
30,000 subjects final

1,100 subjects
Longitudinal design
7 publications >1,000 subjects currently

15,000 subjects final

Cohort imaging: Large, multi-modal datasets

AML@INM-745SEITE 
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