001     866394
005     20210130003435.0
020 _ _ |a 978-3-030-28664-4 (print)
020 _ _ |a 978-3-030-28665-1 (electronic)
024 7 _ |a 10.1007/978-3-030-28665-1_27
|2 doi
024 7 _ |a 2128/23606
|2 Handle
037 _ _ |a FZJ-2019-05548
100 1 _ |a Tordeux, Antoine
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a Stochastic Models, Statistics and Their Applications
|g SMSA 2019
|c Dresden
|d 2019-03-06 - 2019-03-08
|w Germany
245 _ _ |a Artificial Neural Networks Predicting Pedestrian Dynamics in Complex Buildings
260 _ _ |a Cham
|c 2019
|b Springer International Publishing
295 1 0 |a Steland, Ansgar (Editor) Chapter 27 ; ISSN: 2194-1009=2194-1017 ; ISBN: 978-3-030-28664-4=978-3-030-28665-1
300 _ _ |a 363 - 372
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1576510097_618
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Springer Proceedings in Mathematics & Statistics
|v 294
520 _ _ |a The prediction of pedestrian movements in complex buildings is a difficulttask. Recent experiments have shown that the behaviour of pedestrians tends todepend on the type of facility. For instance, flows at bottlenecks often exceed themaximal rates observed in straight corridors. This makes pedestrian behavioursgeometry-dependent. Yet the types of geometries are various, and their systematicidentification in complex buildings is not straightforward. Artificial neural networksare able to identify various types of patterns without supervision. They could be asuitable alternative for forecasts of pedestrian dynamics in complex architectures. Inthis paper, we test this assertion.We develop, train and test artificial neural networksfor the prediction of pedestrian speeds in corridor and bottleneck experiments. Theestimations are compared to those of an elementary speed-based model. The resultsshow that neural networks distinguish the flow characteristics for the two differenttypes of facilities and significantly improve the prediction of pedestrian speeds.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book Series
700 1 _ |a Chraibi, Mohcine
|0 P:(DE-Juel1)132077
|b 1
700 1 _ |a Seyfried, Armin
|0 P:(DE-Juel1)132266
|b 2
700 1 _ |a Schadschneider, Andreas
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1007/978-3-030-28665-1_27
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/866394/files/Tordeux2019b.pdf
856 4 _ |y OpenAccess
|x pdfa
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/866394/files/Tordeux2019b.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866394
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132077
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132266
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21