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Abstract The prediction of pedestrian movements in complex buildings is a difficult

task. Recent experiments have shown that the behaviour of pedestrians tends to

depend on the type of facility. For instance, flows at bottlenecks often exceed the

maximal rates observed in straight corridors. This makes pedestrian behaviours

geometry-dependent. Yet the types of geometries are various, and their systematic

identification in complex buildings is not straightforward. Artificial neural networks

are able to identify various types of patterns without supervision. They could be a

suitable alternative for forecasts of pedestrian dynamics in complex architectures. In

this paper, we test this assertion. We develop, train and test artificial neural networks

for the prediction of pedestrian speeds in corridor and bottleneck experiments. The

estimations are compared to those of an elementary speed-based model. The results

show that neural networks distinguish the flow characteristics for the two different

types of facilities and significantly improve the prediction of pedestrian speeds.
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1 Introduction

Traffic engineers frequently use pedestrian simulation models to predict crowd dy-

namics. This may be to manage large events (e.g. sports events) or in the planning

phases of complex buildings (e.g. train stations). Classical operational approaches

are microscopic. They are decision-based, velocity-based or again acceleration-based

models (see [4, 24] and references therein). Such models consider physical, social

or psychological factors. They are specified by few parameters which generally have

physical interpretations. Before making predictions, the physics-based models have

to be calibrated and validated experimentally or statistically.

Despite their relative simplicity, microscopic physics-based models can describe

realistic pedestrian flows and observed self-organization phenomena [13, 23]. How-

ever, accurate predictions of pedestrian dynamics in complex spatial structures re-

main difficult. Observations show that pedestrians adapt their behaviour according

to the facilities [5]. For instance, the flow significantly increases at bottlenecks

[19, 25, 27]. This leads to geometry-dependent behavior. Yet the types of geometries

are various and not precisely defined. Their systematic identification in complex

buildings is ambiguous.

Artificial neural networks (ANN) represent an alternative modelling approach

for prediction of pedestrian dynamics. The high plasticity of the networks allows

identifying various types of patterns without supervision. Neural networks have al-

ready proven their efficiency for motion planning of robots and autonomous vehicles

(see e.g. [15, 22]). Researchers started to use ANN for pedestrian dynamics as well,

e.g. in complex geometries [6] or for the motion of robots moving in a crowd [3].

Simplest approaches are feed-forward neural networks (see [6, 17]), while the most

sophisticated prediction algorithms lie in long-short-term memory networks [1] and

deep reinforcement learning techniques [3].

The objective of the article is to evaluate whether neural networks could accu-

rately describe pedestrian behaviors for two different types of facilities, namely a

corridor and a bottleneck. We develop and test feed-forward networks for prediction

of pedestrian’s speed based on the relative positions of the closest neighbours. A

physics-based model commonly used in traffic engineering is used for comparison

as a benchmark. The performances significantly differ according to the geometry.

We investigate the ability of neural networks to identify the specific patterns of each

geometry, and evaluate the prediction enhancement.

2 Speed model and artificial neural networks

Our aim is to predict the speed of pedestrians according to the relative positions of

the K = 10 closest neighbours. One denotes in the following (x, y) as the position of

the considered pedestrian, v as its speed, and
(

(xi, yi), i = 1, . . . ,K
)

as the positions

of the K closest neighbours.
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Speed-based model

The physics-based modelling approach is the Weidmann fitting model for the fun-

damental diagram [26]. In the Weidmann’s model, the speed of a pedestrian is a

non-linear function of the mean spacing with the closest neighbours:

FD(s̄K , v0,T, ℓ) = v0

(

1 − exp

(

ℓ − s̄K

v0T

))

. (1)

Here

s̄K =
1

K

∑

i

√

(x − xi)2 + (y − yi)2 (2)

is the mean spacing distance to the K closest neighbours that we use to approximate

the local density. The Weidmann’s model has three parameters: The time gap T ,

corresponding to the following time gap with the neighbor in front; The pedestrian

speed in a free situation, also called the desired speed and denoted v0; The physical

size of a stopped pedestrian ℓ. In the following, we use the Weidmann’s model

(Eq. (1)) and its parameters as a benchmark.

Artificial neural networks

The data-based modelling approach for prediction of the pedestrian speed are feed-

forward neural networks with hidden layers h. We test two networks with different

inputs :

• In the first network, the inputs are the relative positions to the K closest neighbours

(2K inputs)

NN1 = NN1

(

h, (xi − x, yi − y,1 ≤ i ≤ K)
)

. (3)

• In the second network, the speed is predicted as function of the relative positions

and the mean distance spacing s̄K to the K closest neighbours (2K + 1 inputs)

NN2 = NN2

(

h, s̄K , (xi − x, yi − y,1 ≤ i ≤ K)
)

. (4)

The hidden layers h describe the complexity of the network. The number of param-

eters of the algorithm depends on the number of artificial neurons in the hidden

layers. They have in general no physical interpretation.

3 Empirical data

Two experiments are used to calibrate, train, test and compare the physics-based

model and the artificial neural networks. In the first experiment, the pedestrians walk

through a corridor while in the second they pass a bottleneck. The experiments were

performed in 2009 in Düsseldorf, Germany, as part of the Hermes research project

[14]. The trajectories of pedestrians are obtained by video analysis. Roughly N =
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5 Conclusion

We develop artificial neural networks for the prediction of pedestrian dynamics in

two different walking situations, namely a corridor and a bottleneck. The data-driven

approach is able to distinguish pedestrian behaviors according to the facility. The

predictions for mixed data combining both the corridor and bottleneck experiments

are improved by a factor up to 20% compared to a classical physics-based model.

Furthermore, predictions in case of new situations, i.e. predictions of the speed

in a bottleneck for networks trained on the corridor experiment or inversely, are

also significantly improved (by a factor up to 15%), attesting for the robustness

of the networks. Adding the mean spacing in the input of the networks, even if

it is calculated by the relative positions, significantly increases the quality of the

prediction. It allows to reduce the complexity of the algorithm, and therefore the

amount of data necessary for the training.

The results are first steps suggesting that neural networks could be robust algo-

rithms for the prediction of pedestrian dynamics in complex architectures including

different types of facilities. The setting of the network complexity has to be exper-

imentally tested for various geometries. Simulation of the networks remains to be

carried out over full trajectories, and compared to the performances obtained with

other existing microscopic models, and notably anisotropic models and multi-agent

systems. This will be the topic of future work.
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