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Abstract The prediction of pedestrian movements in complex buildings is a difficult
task. Recent experiments have shown that the behaviour of pedestrians tends to
depend on the type of facility. For instance, flows at bottlenecks often exceed the
maximal rates observed in straight corridors. This makes pedestrian behaviours
geometry-dependent. Yet the types of geometries are various, and their systematic
identification in complex buildings is not straightforward. Artificial neural networks
are able to identify various types of patterns without supervision. They could be a
suitable alternative for forecasts of pedestrian dynamics in complex architectures. In
this paper, we test this assertion. We develop, train and test artificial neural networks
for the prediction of pedestrian speeds in corridor and bottleneck experiments. The
estimations are compared to those of an elementary speed-based model. The results
show that neural networks distinguish the flow characteristics for the two different
types of facilities and significantly improve the prediction of pedestrian speeds.
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1 Introduction

Traffic engineers frequently use pedestrian simulation models to predict crowd dy-
namics. This may be to manage large events (e.g. sports events) or in the planning
phases of complex buildings (e.g. train stations). Classical operational approaches
are microscopic. They are decision-based, velocity-based or again acceleration-based
models (see [4, 24] and references therein). Such models consider physical, social
or psychological factors. They are specified by few parameters which generally have
physical interpretations. Before making predictions, the physics-based models have
to be calibrated and validated experimentally or statistically.

Despite their relative simplicity, microscopic physics-based models can describe
realistic pedestrian flows and observed self-organization phenomena [13, 23]. How-
ever, accurate predictions of pedestrian dynamics in complex spatial structures re-
main difficult. Observations show that pedestrians adapt their behaviour according
to the facilities [5]. For instance, the flow significantly increases at bottlenecks
[19, 25, 27]. This leads to geometry-dependent behavior. Yet the types of geometries
are various and not precisely defined. Their systematic identification in complex
buildings is ambiguous.

Artificial neural networks (ANN) represent an alternative modelling approach
for prediction of pedestrian dynamics. The high plasticity of the networks allows
identifying various types of patterns without supervision. Neural networks have al-
ready proven their efficiency for motion planning of robots and autonomous vehicles
(see e.g. [15, 22]). Researchers started to use ANN for pedestrian dynamics as well,
e.g. in complex geometries [6] or for the motion of robots moving in a crowd [3].
Simplest approaches are feed-forward neural networks (see [6, 17]), while the most
sophisticated prediction algorithms lie in long-short-term memory networks [1] and
deep reinforcement learning techniques [3].

The objective of the article is to evaluate whether neural networks could accu-
rately describe pedestrian behaviors for two different types of facilities, namely a
corridor and a bottleneck. We develop and test feed-forward networks for prediction
of pedestrian’s speed based on the relative positions of the closest neighbours. A
physics-based model commonly used in traffic engineering is used for comparison
as a benchmark. The performances significantly differ according to the geometry.
We investigate the ability of neural networks to identify the specific patterns of each
geometry, and evaluate the prediction enhancement.

2 Speed model and artificial neural networks

Our aim is to predict the speed of pedestrians according to the relative positions of
the K = 10 closest neighbours. One denotes in the following (x, y) as the position of
the considered pedestrian, v as its speed, and ((x,-, viyi=1,...,K ) as the positions
of the K closest neighbours.
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Speed-based model

The physics-based modelling approach is the Weidmann fitting model for the fun-
damental diagram [26]. In the Weidmann’s model, the speed of a pedestrian is a
non-linear function of the mean spacing with the closest neighbours:

s
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is the mean spacing distance to the K closest neighbours that we use to approximate
the local density. The Weidmann’s model has three parameters: The time gap 7,
corresponding to the following time gap with the neighbor in front; The pedestrian
speed in a free situation, also called the desired speed and denoted vg; The physical
size of a stopped pedestrian £. In the following, we use the Weidmann’s model
(Eq. (1)) and its parameters as a benchmark.

Artificial neural networks

The data-based modelling approach for prediction of the pedestrian speed are feed-
forward neural networks with hidden layers 4. We test two networks with different
inputs :

* Inthe first network, the inputs are the relative positions to the K closest neighbours
(2K inputs)
NN; = NN (h,(x; = x,y; =y, 1 <i < K)). 3)

* In the second network, the speed is predicted as function of the relative positions
and the mean distance spacing 5k to the K closest neighbours (2K + 1 inputs)

NN, = NNy (h, 5k, (x; — %, =y, 1 <i < K)). 4)

The hidden layers & describe the complexity of the network. The number of param-
eters of the algorithm depends on the number of artificial neurons in the hidden
layers. They have in general no physical interpretation.

3 Empirical data

Two experiments are used to calibrate, train, test and compare the physics-based
model and the artificial neural networks. In the first experiment, the pedestrians walk
through a corridor while in the second they pass a bottleneck. The experiments were
performed in 2009 in Diisseldorf, Germany, as part of the Hermes research project
[14]. The trajectories of pedestrians are obtained by video analysis. Roughly N =
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2100 pseudo-independent observations of pedestrian speeds and relative positions to
the K closest neighbors are extracted by experiment. The data and their description
are available online, see [8].

Corridor and bottleneck experiments

The first dataset, denoted by C for “corridor experiment”, comes from a uni-
directional experiment done in a corridor of length 30 m and width 1.8 m with
periodic boundary condition (see Fig. 1, top panel). The trajectories were measured
on a straight section of length 6 m. Eight experiments were carried out with N = 15,
30, 60, 85, 95, 110, 140 and 230 participants (i.e. for density levels ranging from
approximately 0.25 to 2 ped/m?). The second dataset, denoted B, is an experiment
at bottlenecks (see Fig. 1, bottom panel). The width of the corridor in front of the
bottleneck is 1.8 m while the width of the bottleneck varies from 0.70, 0.95, 1.20 to
1.80 m in 4 distinct experiments involving 150 participants each.

Corridor
Fig. 1 Top panel: Scheme Measurement area

for the corridor experiment
(C). Several experiments were
carried out for different den-
sity levels (ranging from 0.25 6m
to 2 ped/m”). Bottom Panel :
Scheme for the bottleneck 1.8m
experiment (B). Four exper- Bottleneck
iments were carried out for 4m 8m
the different bottleneck widths
w = 0.70, 0.95, 1.20 and Waiting Lok /

area
1.80 m.

Measurement area

Data analysis

The speed/mean spacing data sets in the corridor and at the bottleneck describe two
slightly different interaction behaviours (see Fig. 2). The speed for a given mean
spacing is in average higher in the bottleneck than in the corridor experiment. Esti-
mations by least squares of the time gap T and the desired speed vo for Weidmann’s
model (Eq. (1)) significantly differ according to the experiment (resp. around (.85 s
and 1.50 m/s for the corridor, and 0.49 s and 1.64 m/s for the bottleneck, see Table 1).
The pedestrian size £ remains approximately constant (resp. 0.64 and 0.61 m). Note
that the mean spacing is around 10% smaller in the corridor (resp. 1.03 and 1.14 m
for the bottleneck). However, the mean speed is more than two times larger in the
bottleneck (resp. 0.35 and 0.72 m/s).
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Fig. 2 Pedestrian speeds

as function of the mean
distance spacing with the

K = 10 closest pedestrian
neighbors for the corridor and
bottleneck experiments and
their respective fitting with
Weidmann’s model (Eq. (1)).
Two distinct relationships can
be identified.
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Table 1 Mean value and standard deviation for the speed and the spacing, and least squares
estimations for the pedestrian size ¢, the time gap 7', and the desired speed vy parameters of
Weidmann’s model (Eq. (1)) for the corridor and bottleneck experiments.

Experiment Spacing (m) Speed (m/s) € (m) T (s) Vo (m/s)
Corridor 1.03 £ 0.40 0.35+0.33 0.64 0.85 1.50
Bottleneck 1.14 £ 0.37 0.72+0.34 0.61 0.49 1.64

4 Predictions for the speed

We predict the pedestrian speeds with the artificial neural networks Eqs. (3) and
(4), and use as a benchmark the speed-based model by Weidmann (Eq. (1)). The
coefficients of the neural networks and the three parameters of the physics-based
model are estimated by minimising the mean square error

N

1
MSE = NZ (vi = %) (5)

i=1

Here v; are the observed speeds, while ¥; are the predicted speeds and N is the number
of observations. The training phase of the neural networks is carried out with the
back-propagation method [21] on the normalised dataset. The bootstrap method is
used to evaluate the precision of estimation [16, 18]. Fifty bootstrap sub-samples are
carried out for each training and testing phase. The computations are done with R
[20] and the package neuralnet [9]. We use in the following feed-forward recursive
neural networks to describe the monotonic relationship described in Fig. 2. Note that
alternative data-based prediction methods such as nearest-neighbor regression or
again hidden Markov chain could be used as well [7].
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Setting the network complexity

We determined the complexity (hidden layer 4) of the neural networks through
training and testing phases (cross-validation). Eight different hidden A are tested:
D, (2), (3), 4,2), (5,2), (5,3), (6,3) and (10,4). The simplest network is composed
of a single neuron, while the more complex neural network contains two layers
with respectively 10 and 4 neurons. The training and testing MSE for the full
dataset combining the corridor and bottleneck experiments are presented in Fig. 3.
As expected, the training error systematically decreases as the complexity of the
network increases, while the testing error presents a minimum before overfitting.
This minimum is reached for the single hidden layer # = (3) for the network NN,
based on mean distance spacing and relative positions. While it is reached for h =
(5,2) for the networks NN solely based on the relative positions. The information
provided by the mean spacing, even if resulting from the relative positions, allows
to reduce the required complexity of the networks.

2 (4,2) (5,3) (10,4) 2 (4,2) (5,3) (10,4)
s | | | s | | |
< == Testing = == Testing
| Training _ Training
B0 o ©
< 27 =
| | T — _/
o NNy ) NNz
S S
= [ [ [ = [ [ [
(L (3) (5,2) (6,3) (1 3) (5,2) (6,3)
Hidden layers Hidden layers

Fig. 3 Training and testing errors according to different hidden layers in the networks. The curves
correspond to the mean of 50-bootstrap estimates while the bands describe 0.99-confidence interval.

Predictions for the speed

The neural networks NN; and NN (see Egs. (3) and (4)) are trained and tested for
combinations of the corridor (C) and bottleneck (B) experiments. In the following,
the first argument X in the notation ‘X/Y” corresponds to the dataset of the training
phase, while the second argument Y corresponds to the dataset used for the testing
phase. For instance B/C corresponds to prediction for the corridor experiments with
a network trained on the bottleneck experiment. Seven combinations are analysed :

* B/BandC/C.

Here a single dataset is used for both training and testing.

* B/Cand C/B.
Such cases are used to test the prediction ability in new situations.
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« C+B/B, C+B/C and C+B/C+B.
Such combinations are used to test prediction in heterogeneous situations.

The testing errors are presented in Fig. 4. The prediction for the network NN
solely based on relative positions is, due to a lack of data, worth than those of
the speed model for any combination of single experiments (i.e. scenarios C/C,
B/B, C/B and B/C). The network NN, based on mean spacing is comparable to
Weidmann’s model for the corridor experiment C/C, and better for the bottleneck
B/B (around 10%) or when the network deals with unobserved situations, i.e. for
the datasets C/B and B/C (around 15%). All the networks improve the prediction
in case of mixed dataset, i.e. the scenarios C/C+B, B/C+B and C+B/C+B, with
enhancement up to 20%. The orders of improvement are similar to the ones obtained
in [1] with the social LSTM neural network and the social force pedestrian model
[12] or in [6] for traffic flow with a feed-forward ANN with 4 layers and 20 neurons
and the classical Greenshield [11] and Greenberg [10] models.

B{B B{C c+1|3/B

Fig. 4 Testing error for the
neural networks NN and NN,
(see Eqgs. (3) and (4)) and Wei-
dmann’s model (Eq. (1)) for
combinations of the corridor
(C) and bottleneck (B) experi-
ments. The argument X in the
notation ‘X/Y’ corresponds NN; with & = (5,3)
to the dataset used for the = NN, with & = (3)
training, while the argument I I I

Y is the dataset used for the
testing.
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Quality of the fit
The prediction residuals
zizvi—ﬁi, i:l,...,n (6)

v; being the observed and ¥; the predicted speeds can be considered independent
and normally distributed (see Fig. 5). The Akaike Information Criterion (AIC) for
normal data is (see, e.g., [2])

AIC = 2k + nIn(MSE) + n(1 + In(27)), 7

with & the number of parameters of the algorithm. The parametric Weidmann’s
model has kw = 3 parameters. Each neuron of the neural networks contains / + 1
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parameters, / being the number of inputs. We have I} = 2K and I» = 2K + 1 inputs
for the neural networks NNy and NN,, K being the number of neighbours for the
interaction. The optimal numbers of neurons are 9 and 4. Since K = 10, the number
of parameters for NN; and NN» are respectively k; = 189 and k, = 88.

The AIC differences of the neural networks to the AIC of the Weidmann’s model
are presented in Fig. 6. Relatively to the parameter number, the networks better
describe the observations than the Weidmann speed model when the AIC difference
is negative. We observed that the Weidmann’s model systematically better perform
that the networks for simple scenarios (c.f. scenarios C/C and B/B). Yet, the data-
based algorithm NN, based on the relative positives and mean distance spacing
better performs than the Weidmann’s model for heterogeneous walking situations
(i.e. for the scenarios C+B/C, C+B/B and C+B/C+B).

Weidmann NNy NN,
=} =} =}
< [} ~
2z
‘@
=] fe=} fe=} fe=}
k" — — —
a
S S S
e T T T T 1 T T T T I T T T T 1
-1.0 -05 00 05 10 -1.0 -05 00 05 1.0 -1.0 -05 00 05 10
Residuals, m/s Residuals, m/s Residuals, m/s

Fig. 5 Histogram of the speed residuals z; = v; — v;, v; and ¥; being respectively the observed
and predicted speeds and the empirical normal distribution (continuous curves) of the Weidmann’s
model and the neural networks NN and NN; for the heterogeneous scenario C+B/C+B.

B{B B {c c+1|3 /B
Fig. 6 AIC differences of the NN; with 2 = (5,3)
neural networks NN and NN, @== NN, with & = (3)

(see Eqgs. (3) and (4)) to the

AIC of the Weidmann’s model
Eq. (1). The networks better

describe the data than the Wei-
dmann speed model relatively
to the parameter number when
the AIC difference is negative.

600
|

AIC difference
200
|

-200 0

I I I I
c/C C/B C+B/C C+B/C+B

Scenario
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5 Conclusion

We develop artificial neural networks for the prediction of pedestrian dynamics in
two different walking situations, namely a corridor and a bottleneck. The data-driven
approach is able to distinguish pedestrian behaviors according to the facility. The
predictions for mixed data combining both the corridor and bottleneck experiments
are improved by a factor up to 20% compared to a classical physics-based model.
Furthermore, predictions in case of new situations, i.e. predictions of the speed
in a bottleneck for networks trained on the corridor experiment or inversely, are
also significantly improved (by a factor up to 15%), attesting for the robustness
of the networks. Adding the mean spacing in the input of the networks, even if
it is calculated by the relative positions, significantly increases the quality of the
prediction. It allows to reduce the complexity of the algorithm, and therefore the
amount of data necessary for the training.

The results are first steps suggesting that neural networks could be robust algo-
rithms for the prediction of pedestrian dynamics in complex architectures including
different types of facilities. The setting of the network complexity has to be exper-
imentally tested for various geometries. Simulation of the networks remains to be
carried out over full trajectories, and compared to the performances obtained with
other existing microscopic models, and notably anisotropic models and multi-agent
systems. This will be the topic of future work.
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