000866396 001__ 866396
000866396 005__ 20240313103110.0
000866396 0247_ $$2doi$$a10.1038/s41598-019-54137-7
000866396 0247_ $$2Handle$$a2128/23586
000866396 0247_ $$2altmetric$$aaltmetric:72210131
000866396 0247_ $$2pmid$$apmid:31797943
000866396 0247_ $$2WOS$$aWOS:000501433500001
000866396 037__ $$aFZJ-2019-05550
000866396 082__ $$a600
000866396 1001_ $$0P:(DE-Juel1)178920$$aJordan, Jakob$$b0$$eCorresponding author$$ufzj
000866396 245__ $$aDeterministic networks for probabilistic computing
000866396 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2019
000866396 3367_ $$2DRIVER$$aarticle
000866396 3367_ $$2DataCite$$aOutput Types/Journal article
000866396 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1575986526_22665
000866396 3367_ $$2BibTeX$$aARTICLE
000866396 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866396 3367_ $$00$$2EndNote$$aJournal Article
000866396 520__ $$aNeuronal network models of high-level brain functions such as memory recall and reasoning often rely on the presence of some form of noise. The majority of these models assumes that each neuron in the functional network is equipped with its own private source of randomness, often in the form of uncorrelated external noise. In vivo, synaptic background input has been suggested to serve as the main source of noise in biological neuronal networks. However, the finiteness of the number of such noise sources constitutes a challenge to this idea. Here, we show that shared-noise correlations resulting from a finite number of independent noise sources can substantially impair the performance of stochastic network models. We demonstrate that this problem is naturally overcome by replacing the ensemble of independent noise sources by a deterministic recurrent neuronal network. By virtue of inhibitory feedback, such networks can generate small residual spatial correlations in their activity which, counter to intuition, suppress the detrimental effect of shared input. We exploit this mechanism to show that a single recurrent network of a few hundred neurons can serve as a natural noise source for a large ensemble of functional networks performing probabilistic computations, each comprising thousands of units.
000866396 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000866396 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x1
000866396 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x2
000866396 536__ $$0G:(EU-Grant)604102$$aHBP - The Human Brain Project (604102)$$c604102$$fFP7-ICT-2013-FET-F$$x3
000866396 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x4
000866396 536__ $$0G:(EU-Grant)269921$$aBRAINSCALES - Brain-inspired multiscale computation in neuromorphic hybrid systems (269921)$$c269921$$fFP7-ICT-2009-6$$x5
000866396 588__ $$aDataset connected to CrossRef
000866396 7001_ $$0P:(DE-HGF)0$$aPetrovici, Mihai A.$$b1
000866396 7001_ $$0P:(DE-HGF)0$$aBreitwieser, Oliver$$b2
000866396 7001_ $$0P:(DE-HGF)0$$aSchemmel, Johannes$$b3
000866396 7001_ $$0P:(DE-HGF)0$$aMeier, Karlheinz$$b4
000866396 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b5
000866396 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b6$$ufzj
000866396 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-019-54137-7$$gVol. 9, no. 1, p. 18303$$n1$$p18303$$tScientific reports$$v9$$x2045-2322$$y2019
000866396 8564_ $$uhttps://juser.fz-juelich.de/record/866396/files/30040141870009782652INVOIC2676164614001.pdf
000866396 8564_ $$uhttps://juser.fz-juelich.de/record/866396/files/30040141870009782652INVOIC2676164614001.pdf?subformat=pdfa$$xpdfa
000866396 8564_ $$uhttps://juser.fz-juelich.de/record/866396/files/s41598-019-54137-7.pdf$$yOpenAccess
000866396 8564_ $$uhttps://juser.fz-juelich.de/record/866396/files/s41598-019-54137-7.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866396 8767_ $$82676164614$$92019-11-11$$d2019-11-13$$eAPC$$jZahlung erfolgt$$pSREP-18-28580A$$zFZJ-2019-06157
000866396 909CO $$ooai:juser.fz-juelich.de:866396$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000866396 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178920$$aForschungszentrum Jülich$$b0$$kFZJ
000866396 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b5$$kFZJ
000866396 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b6$$kFZJ
000866396 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000866396 9141_ $$y2019
000866396 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866396 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000866396 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000866396 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866396 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000866396 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000866396 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000866396 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000866396 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866396 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866396 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866396 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866396 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866396 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866396 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866396 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866396 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866396 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000866396 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866396 920__ $$lyes
000866396 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000866396 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000866396 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000866396 9801_ $$aAPC
000866396 9801_ $$aFullTexts
000866396 980__ $$ajournal
000866396 980__ $$aVDB
000866396 980__ $$aUNRESTRICTED
000866396 980__ $$aI:(DE-Juel1)INM-6-20090406
000866396 980__ $$aI:(DE-Juel1)IAS-6-20130828
000866396 980__ $$aI:(DE-Juel1)INM-10-20170113
000866396 980__ $$aAPC
000866396 981__ $$aI:(DE-Juel1)IAS-6-20130828