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In vivo

Probabilistic inference as a principle of brain function has attracted increasing attention over the past decades1,2. 
In support of a sampling-based “Bayesian-brain hypothesis”, the high in-vivo response variability of cortical neu-
rons observed in electrophysiological recordings3 is interpreted in the context of ongoing probabilistic computa-
tion4–8. Simultaneously, it has been found that intrinsically stochastic neural networks are a suitable substrate for 
machine learning9,10. �ese �ndings have led to the incorporation of noise into computational neuroscience mod-
els11–13, in particular to give account for the mechanisms underlying stochastic computing such as sampling-based 
probabilistic inference in biological neuronal substrates7,14–16. Note that the term “stochastic computing” refers to 
the idea that the variability required for this form of computing can be mathematically described as (or replaced 
by) quasi-stochasticity without altering the functionality of the network. It does not imply that its implementation 
is relying on truly stochastic sources of noise, neither in natural nor synthetic neuronal substrates.

A number of potential sources of noise in biological circuits have been discussed in the past17, such as variabil-
ity in synaptic transmission18, ion channel noise19 or synaptic background input20,21. Arguably most widespread is 
the implementation of noise in neural-network models at the level of individual neurons. In this view, neurons are 
described as intrinsically stochastic units (Fig. 1, intrinsic) updating their states as a stochastic function of their 
synaptic input14,22,23. �is description is however at odds with experimental data. In vitro, isolated neurons exhibit 
little response variability20,24,25. Researchers have reconciled the apparent discrepancy by equipping deterministic 
model neurons with additive private independent noise (Fig. 1, private), o�en in the form of Gaussian white 
noise or random sequences of action potentials (spikes) modeled as Poisson point processes15,26. �is restores the 
variability required for stochastic computing and is justi�ed as originating from the background input a neuron 
in nature receives from the remainder of the network. So far, it is unclear though how the biological substrate 
could provide such a well controlled source of stochasticity for each individual unit in the functional network. �e 
implicit assumption of independence of the background noise across units in the network is usually mentioned 
en passant and goes unchallenged.
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Previous experimental and theoretical studies have shown that cortical neuronal networks can generate highly 
irregular spiking activity with small spatial and temporal correlations, resembling ensembles of independent 
realizations of Poisson point processes3,27–29. It is hence tempting to assume that such networks may serve as 
appropriate e�ective noise sources for functional networks performing stochastic computing. However, as the 
size of these noise-generating background networks is necessarily �nite, units in the functional network have 
to share noise sources. Assuming that the background spiking activity is uncorrelated, these shared inputs give 
rise to correlations in the inputs of the functional units, thereby violating the assumption of independence and 
potentially impairing network performance.

�e present work demonstrates that a �nite ensemble of uncorrelated noise sources (Fig. 1, shared) indeed 
leads to a substantial degradation of network performance due to shared-noise correlations. However, replacing 
the �nite ensemble of uncorrelated noise sources by a recurrent neuronal network (Fig. 1, network) alleviates this 
problem. As shown in previous studies30,31, networks with dominant inhibitory feedback can generate small resid-
ual spatial correlations in their activity which counteract the e�ect of shared input. We propose that biological 
neuronal networks exploit this e�ect to supply functional networks with nearly uncorrelated noise despite a �nite 
number of background inputs. Moreover, a similar noise-generation strategy may prove useful for the implemen-
tation of sampling-based probabilistic computing on large-scale neuromorphic platforms32,33.

In this study, we focus on neuronal networks derived from Boltzmann machines22 as representatives of sto-
chastic functional networks. Such networks are widely used in machine learning9,10, but also in theoretical neu-
roscience as models of brain dynamics and function14,15,34. For the purpose of the present study, the advantage of 
models of this class lies in our ability to quantify their functional performance when subject to limitations in the 
quality of the noise.

Results
Boltzmann 

machines (BMs) are symmetrically connected networks of intrinsically stochastic binary units22. With an appro-
priate update schedule and parametrization, the network dynamics e�ectively implement Gibbs sampling from 
arbitrary Boltzmann distributions35. A given network realization leads to a particular frequency distribution of 
network states. E�cient training methods9,36 can �t this distribution to a given data distribution by modifying 
network parameters, thereby constructing a generative model of the data. In the following we investigate to what 
extent the functional performance of BM-like stochastic networks is altered if the intrinsic stochasticity assumed 
in BMs is replaced by private, shared or network -generated noise (Fig. 1). If not otherwise indicated, we consider 
BMs with random connectivity not trained for a speci�c task. Due to the speci�c noise-generation processes, the 
neural network implementations deviate from the mathematical de�nition of a BM. We therefore refer to these 
implementations as “sampling networks”.

In BMs, the intrinsically stochastic units i ∈ {1, …, M} are activated according to a logistic function 
= + β− −F h e( ) (1 )i i

h 1i  of their input �eld = ∑ +=h w s bi j
M

ij j i1  with inverse temperature β, synaptic weight wij 

between unit j and unit i, presynaptic activity sj ∈ {0, 1}, and bias bi (details see Methods). Equivalently, the net-
work nodes of a BM may be regarded as deterministic units with Heaviside activation function Fi(hi) = Θ(hi + ξi), 
receiving additive noise ξi distributed according to βξ−β

[1 tanh ( )]
i4

2  (37, see also Methods).

Figure 1. Sources of noise (gray) for functional neural networks (black). Stars indicate intrinsically stochastic 
units. Open circles correspond to deterministic units. Intrinsic: Intrinsically stochastic units updating their 
states with a probability determined by their total synaptic input. Private: Deterministic units receiving private 
additive independent noise. Shared: Deterministic units receiving noise from a �nite population of independent 
stochastic sources. Network: Deterministic units receiving quasi-random input generated by a �nite recurrent 
network of deterministic units.



3SCIENTIFIC REPORTS |         (2019) 9:18303  | 

www.nature.com/scientificreportswww.nature.com/scientificreports/

Additive Gaussian noise ξ µ σ( , )
i

2  constitutes a more plausible form of noise as it emerges naturally in 
units receiving a large number of inputs from uncorrelated sources24,25,38. Deterministic units receiving private 
Gaussian noise resemble units with a probabilistic update rule. �eir e�ective gain function, however, corre-

sponds to a shi�ed error function µ σ= +F h h( ) erfc( / 2 )/2i i i i
2 , rather than a logistic function. We minimize the 

mismatch between the two activation functions by relating the standard deviation σ of the Gaussian noise to the 
inverse temperature β (see Methods). For a given noise strength, this de�nes an e�ective inverse temperature βe�. 
To emulate a BM at inverse temperature β, we rescale all weights and biases: bi → β/βe�bi − µi, wij → β/βe�wij. �e 
Kullback-Leibler divergence DKL(p, p*) between the empirical state distribution p of the sampling network and the 
state distribution p* generated by a BM over a subset of m units quanti�es the sampling error.

For matched temperature, networks of deterministic units with additive Gaussian noise closely approximate 
BMs (Fig. 2, gray vs. black). �e sampling error decreases as a function of the sampling duration T, and saturates 
at a small but �nite value (Fig. 2a, gray) due to remaining di�erences in the activation functions and hence sam-
pling dynamics. �e residual di�erences between the stationary distributions (Fig. 2b, black vs. gray bars) are 
signi�cantly smaller than the di�erences in relative probabilities of di�erent network states.

�e assumption of idealized private Gaussian noise generated by pseudorandom number generators is hard 
to reconcile with biology. In the following, the Gaussian noise is therefore replaced by input from binary and, 
subsequently, spiking units, thereby mimicking an embedding of the functional circuit into a cortical network. As 
a consequence, the noise of the sampling units exhibits jumps with �nite amplitudes determined by the weights 
of the incoming connections. Only if the number of input events per sampling unit is large and the weights are 
small, the collective signal resembles Gaussian noise (see Supplementary Material). �e sampling error resulting 
from private Gaussian noise therefore constitutes a lower bound on the error achievable by sampling networks 
supplied with noise from a �nite ensemble of binary or spiking sources.

Neurons in a functional circuit embedded 
in a �nite surrounding network have to share noise sources to gather random input at a su�ciently high fre-
quency. In consequence, the input noise for pairs of sampling units is typically correlated, even (or, in particular) 
if the noise sources are independent (Fig. 3, le�).

By replacing private noise with a large number of inputs from a �nite ensemble of independent noise sources, 
we investigate to what extent these shared-noise correlations distort the sampled distribution of network states. 
�e noise sources are stochastic binary units with an adjustable average activity 〈z〉. To achieve a high input event 
count, each sampling unit is randomly assigned a large number K of inputs. For each unit, these are randomly 
chosen from a common ensemble of N sources. On average, a pair of neurons in the sampling network hence 
shares K2/N noise sources. �e ensemble of noise sources is comprised of γN excitatory and (1 − γ)N inhibitory 
units, projecting to their targets with weights w and −gw, respectively. �e input �eld for a single unit in the sam-
pling network is then given by ′ = ∑ + + ∑= =h w s b m zi j

M
ij j i k

N
ik k1 1 , where mik represents the strength of the con-

nection from the k th noise source to the i th sampling unit.

Figure 2. (a) Sampling error as measured by Kullback-Leibler divergence DKL(p, p*) between the empirical state 
distribution p of a sampling network and the state distribution p* generated by the corresponding Boltzmann 
machine as a function of the sampling duration T for di�erent sources of noise (legend, cf. Fig. 1). Error bands 
indicate mean ± SEM over 5 random network realizations. Inset: Same data as main panel in double-logarithmic 
representation. (b) Relative frequencies (vertical, log scale) of six exemplary states s (horizontal) for T = 106 ms. 
Parameters: β = 1, M = 100, K = 200, N = 222, m = 6 (for details, see Supplementary Material).
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For homogeneous connectivity, i.e., identical input statistics for each sampling unit, the second term in ′h i can 
be approximated by a Gaussian noise with mean µ = Kw(γ − (1 − γ)g)〈z〉 and variance σ2 = Kw2(γ + (1 − γ)g2)〈z〉
(1 − 〈z〉) (see Methods). �ese measures allow us to perform a similar calibration of the activation function as in 
the previous section. For heterogeneous connectivity, a similar calibration can be performed based on the empir-
ically obtained mean and variance of the noise input distribution.

If K ≈ N, shared-input correlations are large and the sampling error is substantial, even for long sampling dura-
tion (Fig. 2, blue curve and bars). Increasing N while keeping K �xed leads to a gradual decrease of shared-input 
correlations (~1/N) and therefore to a reduction of the sampling error (Fig. 4, blue curves). For large N ≫ K, the 
sampling error approaches values comparable to those obtained with private Gaussian noise (Fig. 4, blue vs. gray 
curves). For a broad range of N, the sampling error and the average shared-input correlation exhibit a similar 
trend (~1/N).

In recurrent neural networks, inhibitory 
feedback naturally suppresses shared-input correlations through the emerging activity patterns30,31. Here we 
exploit this e�ect to minimize the detrimental in�uence of shared-input correlations arising from a limited num-
ber of noise sources. To this end, we replace the �nite ensemble of independent stochastic sources by a recurrent 
network of deterministic units with Heaviside activation function(Fig. 1, red; see Methods). �e noise generating 
network comprises an excitatory and an inhibitory subpopulation with random, sparse and homogeneous con-
nectivity. Connectivity parameters are chosen such that the recurrent dynamics is dominated by inhibition, 
thereby guaranteeing stable, nearly uncorrelated activity27,30,39,40. To achieve optimal suppression of shared-input 
correlations in the sampling network, the connectivity between the noise network and the sampling network 
needs to match the connectivity within the noise network, i.e. the number and the (relative) weights of excitatory 
and inhibitory inputs have to be identical. Similar to the previous sections, we map the sampling network to a 
corresponding BM by relating the noise intensity to the inverse temperature β. As above, the additional 

Figure 3. Origin of shared-input correlations and their suppression by correlated presynaptic activity. A pair of 
neurons i and j receiving input from a �nite population of noise sources (le�) or a recurrent network (right). 
�e input correlation Cij

in decomposes into a contribution C ijshared,
in  resulting from shared noise sources (solid 

black lines) and a contribution C ijcorr,
in  due to correlations between sources (dashed black lines). If Dale’s law is 

respected (neurons are either excitatory or inhibitory), shared-input correlations are always positive 
( >C 0ijshared,

in ). Le�: In the shared -noise scenario, sources are by de�nition uncorrelated ( =C 0ijcorr,
in ) and cannot 

compensate for shared-input correlations. Right: In inhibition-dominated neural networks (network case), 
correlations between units arrange such that C ijcorr,

in  is negative, thereby compensating for shared-input 

correlations such that the total input correlation Cij
in approximately vanishes.

Figure 4. Sampling error DKL(p, p*) as a function of the number N of noise sources for di�erent sources of noise 
(legend). Error bands indicate mean ± SEM over 5 random-network realizations. Inset: Dependence of average 
input correlation coe�cient ρ of mutually unconnected sampling units on N. Black curve represents N1/  �t. 
Sampling duration T = 105 ms. Remaining parameters as in Fig. 2.
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contribution to the input �elds ′h i of neurons in the sampling network resulting from the noise network can be 
approximated by a normal distribution µ σ( , )2 . Here, we account for an additional contribution to the input 
variance resulting from residual correlations between units in the noise network (see Supplementary Material).

Using a recurrent network for noise generation considerably decreases the sampling error compared to the 
error obtained with a �nite number of independent sources (shared-noise scenario), even if the shared-input 
correlations are substantial (Fig. 2, red vs. blue curve). Precisely because the activity of the noise network is not 
uncorrelated, the shared-input correlations in the units of the functional circuit are counterbalanced (cf. Fig. 3). 
For a broad range of noise-network sizes N, the noise input correlation, and hence the sampling error, are signif-
icantly reduced (Fig. 4, red vs. blue). In this range, the sampling error is comparable to the error obtained with 
private Gaussian noise and almost independent of N (Fig. 4, red vs. gray). Only if the noise network becomes too 
dense (K ≈ N), its dynamics lock into a �xed point (see Supplementary Material) and the sampling performance 
breaks down.

At �rst glance, it may seem counterintuitive that correlated network-generated noise can suppress correlations 
resulting from shared input. To resolve this, consider the noise input correlation

∑ ∑ ∑ ∑ ∑ δ= = 〈 〉 + − 〈 〉
∈ ∈ ∈ ∈ ∈

� ������ ������� � ������������ ������������

C m z m z m m z m m z z(1 )

(1)

ij
k

ik k
l

jl l
k

ik jk k

C

k l
kl ik jl k l

C

in 2

ij ijshared,
in

corr,
in

of two units i and j in the (unconnected) sampling network. Here, = − 〈 〉z z zk k k  denotes the centered activity of 
unit k in the pool  of noise sources, mik the weight of the connection between noise unit k and the target unit i, 
〈·〉 the trial average (average across di�erent initial conditions), and δkl the Kronecker delta. �e �rst term C ijshared,

in  
in (1) describes shared-input correlations arising from common noise sources. �e second term C ijcorr,

in  represents 
pairwise correlations between noise sources (Fig. 3; see also Eq. (19) in31). If Dale’s principle is respected, i.e., if 
the weights mik from a given noise source k have identical sign for all targets i, the �rst contribution is always 
positive. In the shared-noise scenario, C ijcorr,

in  is zero, since, by de�nition, the sources are uncorrelated. In this case, 
the average noise input correlation is solely determined by the connectivity statistics (see inset in Fig. 4, compare 
dark gray and blue). In the network-noise scenario, in contrast, the sources are not uncorrelated due recurrent 
interactions in the noise network. As shown in30,31, C ijcorr,

in  is negative in balanced inhibition-dominated recurrent 
neuronal networks (both in purely inhibitory and in excitatory-inhibitory networks) and nearly cancels the con-
tribution C ijshared,

in  of shared inputs, such that the total input correlation Cij
in is close to zero. Shared components of 

the input �uctuations are canceled by inhibitory feedback, resulting in nearly uncorrelated inputs despite substan-
tial overlap in the presynaptic populations. Here, we exploit exactly this e�ect: a network in the balanced state 
supplies noise with a correlation structure that suppresses shared-input correlations. As noise input correlations 
are decreased, the performance of the sampling networks is increased (Fig. 4).

All realizations within the ensemble of unspeci�c, randomly generated sampling networks con-
sidered so far exhibit consistent performance characteristics (cf. narrow error bands in Figs. 2 and 4). Here, we 
demonstrate similar behaviour for a sampling network where the weights and biases are not chosen randomly but 
trained for a speci�c task – the generation of handwritten digits with imbalanced class frequencies (see Methods). 
Since it is not possible to measure the state distribution over all units in the network (2786+10 states), we restrict the 
analysis to the states of label units as a compressed representation of the full network states. Training is performed 
using ideal Boltzmann machines. Weights and biases are calibrated as before. Noise is added to the training 
samples to reduce over�tting and thereby improve mixing performance. To make the task more challenging, the 
Boltzmann machine is trained to generated odd digits twice as o�en as even digits (see Methods).

�e results are similar to those obtained for sampling networks with random weights and biases: (i) networks 
with private external noise perform close to optimal, (ii) shared noise correlations impair network performance, 
and (iii) the performance is restored by employing a recurrent network for noise generation (Fig. 5). �us, deter-
ministic recurrent neural networks qualify as a suitable noise source for practical applications of neural networks 
performing probabilistic computations.

�e dynamics of 
a BM representing a high-entropy distribution evolve on a �at energy landscape with shallow minima, resulting 
in small pairwise correlations between sampling units. Here, the sampling process is sensitive to perturbations in 
statistical dependencies, such as those caused by shared-input correlations. In contrast, the sampling dynamics in 
BMs representing low-entropy distributions with pronounced peaks are dominated by deep minima in the energy 
landscape. In this case, correlations between sampling units are typically large and noise input correlations have 
little e�ect.

We systematically vary the entropy of the target distribution by changing the inverse temperature β in a BM 
and adjusting the relative noise strength in the other cases accordingly (Fig. 6). Since β always appears as a mul-
tiplicative factor in front of weights and biases, this is equivalent to scaling weights and biases globally. For small 
entropies, the sampling error for shared and network noise is comparable to the error obtained with private noise, 
despite substantial shared-input correlations. Consistent with the intuition provided above, the sampling error for 
shared noise increases signi�cantly with increasing entropy, whereas in the other cases it remains low.

We conclude that generally the e�ect of shared-noise correlations on the functional performance of sam-
pling networks depends on the entropy of the target distribution, or, equivalently, on the absolute magnitude of 
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functional correlations between sampling units. For high-entropy tasks, such as pattern generation, shared-input 
correlations can be highly detrimental. For low-entropy tasks, such as pattern classi�cation, they presumably 
play a less signi�cant role. Nevertheless, independent of the entropy of the task, functional performance for 
network-generated noise is close to optimal.

Figure 5. Performance of a generative network trained on an imbalanced subset of the MNIST dataset for 
di�erent noise sources (legend). (a) Le�: Sketch of the network consisting of external noise inputs, input 
units, trained to represent patterns corresponding to handwritten digits, and label units trained to indicate the 
currently active pattern. Right: Network activity and trial-averaged relative activity of label units for intrinsic 
noise (black) and target distribution (yellow), with even digits occurring twice as o�en as odd digits. (b) 
Sampling error DKL(p, p*) between the empirical state distribution p of label units and the state distribution p* of 
label units generated by the corresponding Boltzmann machine as a function of the number N of noise sources 
for shared and network case. Error bands indicate mean ± SEM over 20 trials with di�erent initial conditions 
and noise realizations.

Figure 6. Sampling error DKL(p, p*) as a function of the entropy S of the target distribution for di�erent 
sources of noise (same colors as in other �gures). Error bands indicate mean ± SEM over 5 random network 
realizations. Vertical dashed gray line indicates maximal entropy, corresponding to a uniform target 
distribution. Inset: pairwise activity correlation coe�cients in a Boltzmann machine for di�erent entropies of 
the sampled state distribution. Sampling duration T = 105 ms. Remaining parameters as in Fig. 2.



7SCIENTIFIC REPORTS |         (2019) 9:18303  | 

www.nature.com/scientificreportswww.nature.com/scientificreports/

Both from a biological as 
well as a technical point of view, it makes sense to minimize material and energy costs for noise generation. To 
achieve a good sampling performance, the number N of noise sources as well as the number K of noise inputs per 
functional unit need to be su�ciently large (Fig. 4). �erefore, a certain minimal amount of resources have to be 
reserved for noise generation. However, once these resources are allocated, small recurrent networks can pro-
vide noise for large sampling networks without sacri�cing computational performance. We note in passing that, 
moreover, a single noise network can supply an arbitrary number of independent functional networks with noise.

Here, we vary the size of the sampling network M, while keeping N and the number m of observed neurons 
�xed (Fig. 7). As the variance of the input distribution for a neuron in the sampling network scales proportionally 
to its in-degree, and the sampling network is fully connected, increasing M reduces the e�ective noise amplitude. 
As a consequence, the entropy of the marginal distribution over the subset of observed neurons changes (see 
Supplementary Material), thereby in�uencing the sampling performance in the presence of shared-noise correla-
tions (see previous section). To avoid this e�ect, we scale the weights in the sampling network with M1/ 30,39,41, 
thereby keeping the entropy of the marginal target distribution approximately constant (Fig. 7 inset, gray curve).

In the presence of private noise, the sampling error is small and independent of M (Fig. 7). As before, the 
performance is considerably impaired for shared noise. �e decrease in the error for larger sampling networks 
cannot be traced back to a change in entropy, by virtue of the weight scaling. Instead, the decrease results from a 
more e�cient suppression of external correlations within the sampling network arising from the growing negative 
feedback for increasing M in sampling networks with net recurrent inhibition39. Still, even for large M, the error 
remains signi�cantly larger than the one obtained with private noise. For network noise, in contrast, the error is 
almost as small as for private noise, and independent of M. Qualitatively similar �ndings are also obtained with-
out scaling synaptic weights unless the entropy of the target distribution is too small (details see Supplementary 
Material).

Figure 7. Sampling error DKL(p, p*) as a function of the sampling-network size M for di�erent sources of noise 
(legend). Error bands indicate mean ± SEM over 5 random network realizations. Inset: Entropy of the sampled 
state distribution p as a function of M. Horizontal dashed dark gray line indicates entropy of uniform 
distribution, i.e., maximal entropy. Average weight in sampling networks: µ = − . M0 15/

BM
. Sampling 

duration T = 105 ms. Remaining parameters as in Fig. 2.

Figure 8. Sampling in spiking networks with biologically plausible noise networks. Kullback-Leibler divergence 
DKL(p, p*) between the empirical state distribution p of a sampling network of spiking neurons and the state 
distribution p* generated by the corresponding Boltzmann machine as a function of the number N of noise 
sources. Error bands indicate mean ± SEM over 10 random network realizations (see Supplementary Material).
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�e results so far rest 
on networks of binary model neurons. �eir dynamics are well understood30,34,39–41, and their mathematical 
tractability simpli�es the calibration of sampling-network parameters for network-generated noise. Neurons in 
mammalian brains communicate, however, predominantly via short electrical pulses (spikes). It was shown pre-
viously15,42, that networks of spiking neurons with private external noise can approximately represent arbitrary 
Boltzmann distributions, if binary-unit parameters are properly translated to spiking-neuron parameters (see 
gray curve in Fig. 8; see Methods and Supplementary Material).

Consistent with our results on binary networks, the sampling performance of networks of spiking leaky 
integrate-and-�re neurons decreases in the presence of shared-noise correlations, but recovers for noise provided 
by a recurrent network of spiking neurons resembling a local cortical circuit with natural connection density and 
activity statistics (Fig. 8). Similar to binary networks, a minimal noise-network size N ensures an asynchronous 
activity regime, a prerequisite for good sampling performance. Spiking noise networks that are too densely con-
nected (K/N → 1) tend to synchronize, causing large sampling errors (see red curve in Fig. 8 for small N).

Discussion
Consistent with the high variability in the activity of biological neural networks17, many models of high-level 
brain function rely on the presence of some form of noise. We propose that additive input from deterministic 
recurrent neural networks serves as a well controllable source of noise for functional network models. �e article 
demonstrates that networks of deterministic units with input from such noise-generating networks can approxi-
mate a large variety of target distributions and perform well in probabilistic generative tasks. �is scheme covers 
both networks of binary and networks of spiking model neurons, and leads to an economic usage of resources in 
biological and arti�cial neuromorphic systems.

From a biological perspective, our concept is tightly linked to experimental evidence. In the absence of syn-
aptic input (in vitro), �uctuations in the membrane potentials of single neurons are negligible. Consequently, 
the variability in neuronal in-vitro responses is small20,24,25. In the presence of synaptic inputs from an active 
surrounding network (in vivo), in contrast, �uctuations in membrane potentials are substantial and the response 
variability is large3. Furthermore, biological neural networks exhibit an abundance of inhibitory feedback connec-
tions. �e active suppression of shared-input correlations by inhibitory feedback30,31, i.e., the mechanism under-
lying the present work, accounts for the small correlations in the activity of pairs of neurons observed in vivo29. 
Moreover, the theory correctly describes the speci�c correlation structure of inputs observed in pairwise in-vivo 
cell recordings43. Hence, active decorrelation via inhibitory feedback shapes the in-vivo activity. Here, we propose 
a functional role for this decorrelation mechanism: cortical circuits supply each other with quasi-uncorrelated 
noise. Note that a similar mechanism for variability injection has been hypothesized to lie at the basis of song 
learning in Zebra �nches: a cortical-basal ganglia loop actively generates variability necessary for successful 
motor learning44,45.

For conceptual simplicity, the study segregates a neuronal network into a functional and a noise-generating 
module. In biological substrates, these two modules may be intermingled. �e noise-generating module may be 
interpreted as an ensemble of distinct functional networks serving as a “heat bath” for a speci�c functional circuit. 
In this view, one network’s function is another network’s noise.

We show that shared-noise correlations can be highly detrimental for sampling from given target distribu-
tions. Generating noise with recurrent neural networks overcomes this problem by exploiting active decorrela-
tion in networks with inhibitory feedback30,31. As an alternative solution, the e�ect of shared-input correlations 
could be mitigated by training functional network models in the presence of these correlations46. However, this 
approach is speci�c to particular network models. Moreover, it prohibits porting of models between di�erent 
substrates. Networks previously trained under speci�c noise conditions will not perform well in the presence 
of noise with a di�erent correlation structure. Our approach, in contrast, constitutes a general-purpose solution 
which can also be employed for models that cannot easily be adapted to the noise statistics, such as hard-wired 
functional network models26,47 or bottom-up biophysical neural-network models48,49.

In biological neural networks, the probabilistic gating of ion channels in the cell membrane19 and the variabil-
ity in synaptic transmission18 constitute alternative potential sources of stochasticity. However, for the majority 
of stochastic network models, ion-channel noise is too small to be relevant: in the absence of (evoked or spon-
taneous) synaptic input, �uctuations in membrane potentials recorded in vitro are in the µV range and hence 
negligible compared to the mV �uctuations necessary to support sampling-based approaches15. Synaptic stochas-
ticity has been studied both in vitro18,50,51 and in vivo52,53 and comes in two distinct forms: spontaneous release 
and variability in evoked postsynaptic response amplitudes, including synaptic failure. �e rate of spontaneous 
synaptic events measured at the soma of the target neuron is in the range of a few events per second54,55. �e 
resulting �uctuations in the input are therefore negligible. �e variability in postsynaptic response amplitudes, in 
contrast, is substantial and can have multiple origins: in the absence of background activity (in vitro), response 
amplitudes vary due to a quasi-stochastic fusion of vesicles with the presynaptic membrane and release of neuro-
transmitter. In vivo, other complex deterministic processes such as the interplay between background input and 
short-term plasticity, the voltage dependence of synaptic currents or shunting may further contribute to this form 
of quasi-stochasticity. �e variability in postsynaptic response amplitudes has o�en been suggested as a plausible 
noise resource for computations in neural circuits16,56–60. Due to its multiplicative, state-dependent nature, this 
form of noise is fundamentally di�erent from the additive noise usually employed in sampling models. Ne�ci et 
al.16 propose a model of stochastic computation in neuronal substrates employing a speci�c model of synaptic 
stochasticity. Due to the state-dependent nature of noise generated by stochastic synapses, the resulting systems 
do not resemble Boltzmann machines in general. �e authors nevertheless demonstrate that such networks can 
be trained to classify handwritten digits with contrastive divergence, a learning algorithm speci�c to Boltzmann 
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machines. Apart from this speci�c experimental demonstration, the authors do not provide any systematic anal-
ysis of their model. In particular, it remains unclear why and under what conditions contrastive divergence is a 
suitable learning algorithm. A theoretically solid model of sampling-based computations in neuronal substrates 
employing synaptic stochasticity as a noise resource remains a topic for future studies.

�e present work focuses on a speci�c class of neuronal networks performing sampling-based probabilistic 
inference. An alternative approach to sampling-based Bayesian computation in neural circuits is provided by 
models relying on a parametric instead of a sample-based representation of probability distributions5,61–63. In 
contrast to the methods considered here, the posterior distributions are computed essentially instantaneously 
without requiring the collection of samples. Such a parametric approach however comes at the cost of restrict-
ing the distributions that can be represented by a particular network architecture. In addition, learning in these 
systems remains a topic of ongoing research, while powerful learning algorithms exist for networks performing 
sampling-based inference36.

Some neuromorphic-hardware systems follow innovative approaches to the generation of uncorrelated noise 
for stochastic network models, such as exploiting thermal noise and trial-to-trial �uctuations in neuron parame-
ters64–66. However, hardware systems need to be speci�cally designed for a particular technique and sacri�ce chip 
area that otherwise could be used to house neurons and synapses. �e solution proposed in this article does not 
require speci�c hardware components for noise generation. It solely relies on the capability of emulating recur-
rent neural networks, the functionality most neuromorphic-hardware systems are designed for. On the analog 
neuromorphic system Spikey67, for example, it has already been demonstrated that decorrelation by inhibitory 
feedback is e�ective and robust, despite large heterogeneity in neuron and synapse parameters and without the 
need for time-consuming calibrations68. While a full neuromorphic-hardware implementation of the framework 
proposed here is still pending, the demonstration on Spikey shows that our solution is immediately implementa-
ble and feasible.

Sampling networks consist of M binary units that switch from the inactive (0) 
to the active (1) state with a probability Fi(hi) := p(si = 1|hi), also referred to as the “activation function”. �e input 
�eld hi of a unit depends on the state of the presynaptic units and is given by:

∑= + .h w s b(s)
(2)

i
j

ij j i

Here wij denotes the weight of the connection from unit j to unit i and bi denotes the bias of unit i. We perform 
an event-driven update, drawing subsequent inter-update intervals τi ~ Exp(λ) for each unit from an exponential 
distribution with rate λ := 1/τ with an average update interval τ. Starting from t = 0, we update the neuron with 
the smallest update time ti, choose a new update time for this unit ti + τi and repeat this procedure until any ti is 
larger than the maximal simulation duration Tmax. Formally, this update schedule is equivalent to an asynchro-
nous update where a random unit is selected at every update step22,30,39,69. �e introduction of “update times” only 
serves to introduce a natural time-scale of neuronal dynamics (see, e.g.39).

Weights are randomly drawn from a beta distribution Beta(a, b) and shi�ed 
to have mean µBM. We choose the beta distribution with a = 2, b = 2 as it generates interesting Boltzmann dis-
tributions while having �nite support, thereby reducing the probability of generating distributions with almost 
isolated states. �e small error across randomly chosen initial conditions in Figs. 2, 4, 6 and 7 indicates that all 
randomly generated sampling networks indeed possess good mixing properties, i.e., the typical time taken to 
traverse the state space is much smaller than the total sampling duration. Weights are symmetric (wij = wji) and 
self connections are absent (wii = 0). To control the average activity in the network, the bias for each unit is chosen 
such that on average, it cancels the input from the other neurons in the network for a desired average activity 〈s〉: 
bi = Mµ〈s〉39. Whenever a unit is updated, the state of (a subset) of all units in the sampling network is recorded. 
To remove the in�uence of initial transients, i.e., the burn-in time of the Markov chain, samples during the initial 
interval of each simulation (Twarmup) are excluded from the analysis. From the remaining samples we compute the 
empirical distribution p of network states. �e following sections introduce the activation function for the units 
for di�erent ways of introducing noise to the system.

Intrinsically stochastic units switch to the active state with probability

=
+ β−

F h
e

( )
1

1
,

(3)
i i hi

where β determines the slope of the logistic function and is also referred to as the “inverse temperature”. For small 
β, changes in the input �eld have little in�uence of the update probability, while for large beta a unit is very sensi-
tive to changes in hi and in the limit β → ∞ the activation function becomes a Heaviside step function. Symmetric 
networks with these single-unit dynamics and the update schedule described in Binary network simulation are 
identical to Boltzmann machines, leading to a stationary distribution of network states of Boltzmann form:

∑ ∑β
β






+






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2 (4)i j
ij i j

i
i i

,
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Instead of directly prescribing a stochastic update rule like Eq. 3, we can view these units as deterministic units 
with a Heaviside activation function and additive noise on the input �eld:

ξ= Θ +F h h( ) ( ),i i i i

with ξ βξ−β
(1 tanh ( ))

i i4

2 37 and Θ denoting the Heaviside step function

Θ = ≥{x x( ) 1 if 0
0 else (5)

Averaging over the noise ξi yields the probabilistic update rule (Eq. 3). However, on biophysical grounds it is 
di�cult to argue for this particular distribution of the noise.

We consider a deterministic model in which we assume a more natural distribution for the 
additive noise, namely Gaussian form (ξ µ σ( , )

i i i
2 ), for example arising from a large number of independent 

background inputs38. In this case, the noise averaged activity for �xed hi is given by:

∫
∫

ξ ξ ξ

ξ µ σ

µ

σ

= Θ +

=

=
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
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Similar to the intrinsically stochastic units (Intrinsic noise), the update rule for deterministic units with 
Gaussian noise is e�ectively probabilistic. Both functions share some general properties (bounded, monotonic):

=

=

∂ > ∀

→−∞

→∞

F h

F h

F h h

lim ( ) 0,

lim ( ) 1,

( ) 0 ,

h
i i

h
i i

h i i i

i

i

i

and one can hence hope to approximate the dynamics in Boltzmann machines with a network of deterministic 
units with Gaussian noise by a systematic matching of parameters.

One approach is to choose parameters for the Gaussian noise such that the di�erence between the two acti-
vation functions is minimized. To simplify notation we drop the index i in the following calculations. Since both 
activation functions are symmetric around zero, we require that their value at h = 0 is identical, �xing one param-
eter of the noise distribution (µ = 0). To �nd an expression for the noise strength σ, the simplest method equates 
the coe�cients of a Taylor expansion up to linear order of both activation functions around zero. For the logistic 
activation function (Eq. 3) this yields:

β= . + . +F h h h( ) 0 5 0 25 ( ),2

while for the units with Gaussian noise (Eq. 6) we obtain

Figure 9. Fit of error function to logistic function via Taylor expansion (purple) and L2 di�erence of integrals 
(green). (A) Di�erence of logistic activation function and error function with adjusted σ via Eq. 7 (purple) and 
via Eq. 10 (green). Inset: activation functions. (B) L2 di�erence of activation functions (Eq. 8) as a function of 
the strength of the Gaussian noise σ. Vertical bars indicate σ obtained via the respective method.
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πσ
= . + + .F h h h( ) 0 5

1

2
( )2

Equating the coe�cients of h gives an expression for the noise strength σ as a function of the inverse temper-
ature β:

σ β
πβ

= .( )
2 2

(7)

While this approach is conceptually simple, the Taylor expansion around zero leads to large deviations 
between the activation functions for input �elds di�erent from zero (Fig. 9).

Another option taking into account all possible values of h is to minimize the L2 di�erence of the two activa-
tion functions:

∫σ σ= − ′
σ′

h l h g harg min d ( ( ) ( , )) ,
(8)

2

where l denotes the logistic and g the activation function for Gaussian noise. Since it is not possible to ana-
lytically evaluate the resulting integral, we opt for a slightly simpler approach: minimizing the L2 di�erence of 
integrals of the activation function from −∞ to 0:

σ σ= | − ′ |
σ′

−∞ −∞L h G harg min( ( ) ( , ) ) ,0 0 2

with capital letters denoting antiderivatives. To �nd the minimal σ, we take the derivative of the right hand 
side with respect to σ′ and equate it with zero:

− | − | ∂ | = .σ−∞ −∞ −∞F h G h G h2( ( ) ( ) ) ( ) 00 0 0

From this we observe that

| − | =−∞ −∞F h G h( ( ) ( ) ) 0, (9)
0 0

is a su�cient condition to satisfy this equation. We compute the integral of both activation functions. For the 
logistic activation function (Eq. 3) we obtain:

∫ ∫
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= +
+

β

β
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e

h
e
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log(1 )
,
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with the de�nite integral

∫ β
=

−∞
h F hd ( )

log2
,

0

since the two diverging terms for h → −∞ cancel. For the activation function with Gaussian noise (Eq. 6) we 
get:

∫ ∫ σ

σ

π σ
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and computing the de�nite integral leads to:

∫
σ

π
=

−∞
h F hd ( )

2
,

0

since the second term vanishes for h → −∞ as the complementary error function decreases faster than |h|−1. 
From Eq. 9 we hence �nd σ as a function of β:

σ β
π

β
= .( )

log2 2

(10)

Even though this value is not minimizing the L2 di�erence, it provides a better �t than that obtained by simply 
Taylor expanding around zero, since in this case we are also taking into account the mismatch for larger absolute 
values of h (Fig. 9). We will hence use Eq. 10 to translate between the inverse temperature β of the logistic activa-
tion function and the strength σ of the Gaussian noise.
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In the previous section we have assumed that each deterministic unit in the sampling network 
receives private, uncorrelated Gaussian noise. Now we instead consider a second population  of = | |N  mutu-
ally unconnected, intrinsically stochastic units with logistic activation functions (cf. Intrinsic noise) that provide 
additional input to units in the sampling network. In the following we will denote the population/set of units in 
the sampling network by  and refer to the second population as the background population or noise population. 
�e input �eld for a unit i in the sampling network  hence contains an additional term arising from projections 
from the background population (cf. Eq. 2):

S B

∑ ∑′ = + + .
∈ ∈
� ����� ����� � ���� ����

h w s b m z

(11)

i
j

ij j i

h

k
ik k

background input
i

Here zk denotes the state of the k th unit in the background population  and mij the weight from unit j in the 
background population to unit i in the sampling network. Given the total input �eld ′h i, the neurons in the sam-
pling network change their state deterministically, according to

′ = Θ ′ .F h h( ) ( ) (12)i i i

Since the units in the background population are mutually unconnected, their average activity 〈zi〉 can be arbi-
trarily set by adjusting their bias: bk = F−1(〈zk〉), where F−1 denotes the inverse of the logistic activation function:

β
〈 〉 =

−
.−

〈 〉

F z( )
1

log
1

1
z

1
1

Ignoring the actual state of the background population, we can employ the central limit theorem and approx-
imate the background input in the input �eld ′h i by a normal distribution with mean and variance given by

∑µ = 〈 〉
∈

m z ,
(13)

i
k

ik k

∑σ = 〈 〉 − 〈 〉 .
∈

m z z(1 )
(14)

i
k

ik k k
2 2

�e total input �eld can then be written as ′h i = hi + ξi with ξ µ σ( , )
i i i

2 , as in the case of private uncorre-
lated Gaussian noise. However, note that correlations in input �elds ′h i and ′h j in the sampling network arise due 
to units in the background population projecting to multiple units in the sampling network (〈(ξi − µi)(ξj − µj)〉 
does not necessarily vanish for all ∈i j, ).

For the connections from the background population we use �xed weights and impose Dale’s law, i.e., units are 
either excitatory mij = w > 0 ∀i or inhibitory mij = −gw < 0 ∀i, with a ratio of excitatory units of γ = | | | |/E . Here 
∈ +w  denotes the excitatory synaptic weight and ∈ +g  a scaling factor for the inhibitory weights. Each unit 
∈i  in the sampling network receives exactly ε=K N  inputs from units in the background population. 
ε = ∈K N/ [0, 1] is referred to as the connectivity. We do not allow multiple connections between a unit in the 
sampling network and unit in the background population. Assuming all units in the background population have 
identical average activity 〈z〉, all units in the sampling network receive statistically identical input and the equa-
tions for the mean and variance simplify to

µ γ γ= − − 〈 〉Kw g z( (1 ) ) , (15)

σ γ γ= + − 〈 〉 − 〈 〉 .Kw g z z( (1 ) ) (1 ) (16)
2 2 2

We can hence employ the same procedure as in the previous section to relate the strength of the background 
input to the inverse temperature of a Boltzmann machine.

We now consider a background population of deterministic units projecting to the sam-
pling network. �e background population has sparse, random, recurrent connectivity with a �xed indegree. 
Connections in the background population are realized with the same indegrees K, weights w and −gw and ratio 
of excitatory inputs γ as the connections to the sampling network (cf. Shared noise). �e connection matrix of the 
background population is hence generally asymmetric. As before, we can approximate the additional contribu-
tion to the input �elds of neurons in the sampling network with a normal distribution, with parameters

∑µ =
∈

m z ,
(17)

i
k

ik k

∑ ∑σ = − +
∈ ≠

m z z m m c(1 ) ,
(18)

i
k

ik k k
k l

ik il kl
2 2

where the additional term in the input variances arises from correlations ckl :=〈(zk − 〈zk〉)(zk − 〈zk〉)〉 between 
units in the background population. As in the sampling network we choose the bias to cancel the expected aver-
age input from other units in the network for a desired mean activity 〈zk〉. However since the second population 
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exhibits rich dynamics due to its recurrent connectivity the actual average activity will deviate from this value, 
in particular due to an in�uence of correlations on the mean activity. We employ an iterative mean�eld-theory 
approach that allows us to compute average activities and average correlations approximately from the statistics 
of the connectivity. We now shortly summarize this approach following39. Note that in the literature a threshold 
variable θi is o�en used instead the bias bi, which di�ers in the sign: bi = −θi.

For a network of binary units, the joint distribution of network states p(s) contains all information necessary 
to statistically describe the network activity, in particular mean activities and correlations. It can be obtained by 
solving the Master equation of the system, which determines how the probability masses of network states evolve 
over time in terms of transition probabilities between di�erent states70

∑∂ = | − | .p p p p p(s ) (s s ) (s ) (s s ) (s )
(19)

t i
j

i j j j i i

�e �rst term describes probability mass moving into state i from other states j and the second term proba-
bility mass moving from state i to other states j. Since in general, and in particular in large networks, Eq. 19 is too 
di�cult to solve directly, we focus on obtaining equations for �rst two momenta of p(s). Starting from the master 
equation one can derive the following self-consistency equations for the mean activity of units in a homogeneous 
network by assuming �uctuations around their mean input to be statistically independent39:

⟨ ⟩ ⟨ ⟩s s
b1

2
erfc

2
t i i

i i
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∂ + =


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+ 


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where the µi and σi are given by Eqs. 17 and 18, respectively. To obtain the average activity in the stationary state, 
i.e., for ∂t〈si〉 = 0, this equation needs to be solved self-consistently since the activity of unit i can in�uence its 
input statistics (µi, σi) through the recurrent connections. By assuming homogeneous excitatory and inhibitory 
populations, the N dimensional problem reduces to a two-dimensional one39:
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with α ∈ E I{ , }. �e population-averaged equations for the mean and variance of the input hence are39:

∑µ =
α

β
αβ αβ βK w s ,

(21)

∑ ∑σ = +α
β

αβ αβ β
β γ

αβ αγ βγK w a Kw Kw c( ) ( ) ,
(22)

2 2

,

with KEE = KIE = γN, KEI = KII = (1 − γ)N and wEE = wIE = w, wEI = wII = −gw. To derive a self-consistency equa-
tion for pairwise correlations from the master equation one linearize the threshold activation function by consid-
ering a Gaussian distribution of the input �eld caused by recurrent inputs. �is leads to the following set of linear 
equations for the population-averaged covariances39:
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�e e�ective population-averaged weights ∼αβw  are de�ned as:

µ σ=∼
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39. Since the average activity and covariances are 

mutually dependent, we employ an iterative numerical scheme in which we �rst determine the stationary activity 
under the assumption of zero correlations according to Eq.  20. Using this result we compute the 
population-averaged covariances from Eq. 23 which in turn can be used to improve the estimate for the stationary 
activity since they in�uence input statistics according to Eq. 22. We repeat this procedure until the values for 
population-averaged activities and covariances in two subsequent iterations do not di�er signi�cantly any more. 
�e mean activity and correlations in the recurrent background population obtained via this procedure, allows us 
to compute the input statistics in the sampling network and hence relate the inverse temperature to the mean and 
variance of the input as in Private noise.

Certain assumptions enter this analytical description of network statistics, which might not be ful�lled in gen-
eral. �e description becomes much more complicated for spiking neuron models with non-linear subthreshhold 
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dynamics like conductance-based neurons in neuromorphic systems15. In this case, one can resort to empirically 
measuring the input statistics for a single isolated neuron given a certain arrangement of background sources (cf. 
Calibration (spiking networks)). An advantage of this methods is that it is easy and straight forward to implement 
and will work for any con�guration of background populations and sampling networks, allowing for arbitrary 
neuron models and parameters. However, to estimate the statistics of the input accurately, one needs to collect 
statistics over a signi�cant amount of time.

�e methods discussed above allow us to compute e�ective inverse temper-
ature βe� from the statistics of di�erent background inputs, either additive Gaussian noise, a population of intrin-
sically stochastic units or a recurrent network of deterministic units. To approximate Boltzmann distributions via 
samples generated by networks with noise implemented via these alternative methods, we match their (e�ective) 
inverse temperatures. A straightforward option is to adjust the noise parameter according to the desired input 
statistics. While this is possible in the case of additive Gaussian noise for which we can freely adjust µi and σi, it is 
di�cult to achieve in practice for the other methods. We can achieve the same e�ect by rescaling the weights and 
biases in the sampling network. �e inverse temperature β appears as a multiplicative factor in front of weights 
and biases in the stationary distribution of network states (Eq. 4). Scaling β is hence equivalent to scaling all 
weights and biases by the inverse factor15,40,71. An in�nite amount of Boltzmann machines hence exists, all di�er-
ing in weights ( α α→ ∈ +w w, ), biases (b → αb) and inverse temperatures (β → β/α), producing statistically  
identical samples. Given a mean background input µi and an e�ective inverse temperature βe�(σi) (cf. Eq. 10) 
arising from a particular realization of noise sources, we can emulate a Boltzmann machine at inverse temperature 
β by rescaling all weights and biases in the sampling network according to

β β µ→ −b b/ , (24)i i ieff

β β→ .w w/ (25)ij ijeff

�is method hence only requires us to adapt weights and biases globally in the sampling network according to 
the statistics arising from an arbitrary realization of background input.

In the generative task, we measure how well a sampling network with 
various realizations of background noise can approximate a trained data distribution, in contrast to the random 
distributions considered in the other simulations. We use contrastive divergence (CD-136) to train a Boltzmann 
machine on a speci�c dataset. We consider a dataset consisting of a subset of MNIST digits72, downscaled to 
12 × 12 pixels and with grayscale values converted to black and white. We select one representative from each 
class (0…9) and extend the 144 array determining the pixel values with 10 entries for a one-hot encoding of the 
corresponding class, e.g., for the pattern zero, the last ten entries contain a 1 at the �rst place and zeros otherwise. 
�ese ten 154 dimensional patterns form the prototype dataset. A (noisy) training sample is generated by �ip-
ping every pixel from the �rst 144 entries of a prototype pattern with probability p�ip. A�er training, the network 
should represent a particular distribution q* over classes. Training directly on a samples generated according 
to the class distribution q* will, in general, lead to a di�erent stationary distribution of one-hot readout states p 
generated by the network, since some patterns are more salient then others. For example, by training on equal 
amounts of patterns of zeros and ones, the network will typically generate more zero states. To nevertheless 
represent q* with the network, we iteratively train the Boltzmann machine choosing images and labels from a 
distribution q that is adjusted between training sessions (Alg. 1).

Over many repetitions this procedure will lead to a stationary distribution of classes p that closely approxi-
mates q*.

A�er training a Boltzmann machine using this approach, we obtain a set of parameters, w and b, that can be 
translated to parameters for sampling networks by appropriate rescaling as discussed above. We collect samples 
from p by running the network in the absence of any input and recording the states of all label units.

Similar as for binary units, we need to match the parameters for spik-
ing sampling networks to their respective counterparts in Boltzmann machines. We use high-rate excitatory 
and inhibitory inputs to turn the deterministic behavior of a leaky-integrate-and-�re neuron into an e�ectively 
stochastic response15. However, in contrast to the original publication, we consider current-based synapses for 

Algorithm 1. Training a fully visible Boltzmann machine via CD-1 to represent a particular distribution q* 
over label units with one-hot encoding.
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simplicity. Since the calibration is performed on single cell level, we use the identical calibration scheme for the 
private, shared and network case. For a given con�guration of noise sources, we �rst simulate the noise network 
with the speci�ed parameters and measure its average �ring rate. �e corresponding independent Poisson sources 
are set to �re with the same rate to ensure comparability between the two approaches. �e calibrations are then 
performed by varying the resting potential and recording the average activity of a single cell that is supplied with 
input from either a noise network or Poisson sources. �e private case is calibrated separately in a similar manner. 
By �tting the logistic function to the activation obtained by this procedure, we obtain two parameters, a shi� and 
a scaling parameter, which are used to translate the synaptic weights from binary units to spiking neurons15,73.
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