000866410 001__ 866410
000866410 005__ 20210130003441.0
000866410 0247_ $$2doi$$a10.1016/j.gca.2019.09.018
000866410 0247_ $$2ISSN$$a0016-7037
000866410 0247_ $$2ISSN$$a1872-9533
000866410 0247_ $$2Handle$$a2128/23392
000866410 0247_ $$2WOS$$aWOS:000491872600002
000866410 037__ $$aFZJ-2019-05563
000866410 082__ $$a550
000866410 1001_ $$0P:(DE-Juel1)165707$$aWei, Jing$$b0$$eCorresponding author
000866410 245__ $$aFirst real-time isotopic characterisation of N2O from chemodenitrification
000866410 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000866410 3367_ $$2DRIVER$$aarticle
000866410 3367_ $$2DataCite$$aOutput Types/Journal article
000866410 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573824269_22182
000866410 3367_ $$2BibTeX$$aARTICLE
000866410 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866410 3367_ $$00$$2EndNote$$aJournal Article
000866410 520__ $$aChemodenitrification can be a substantial abiotic source of nitrous oxide (N2O) in soil. The isotopic signature of N2O from this process could support source partitioning, but it is currently unknown in sufficient detail. In this study, we determined the isotopic composition of N2O, produced by the reaction of nitrite (NO2−) with lignin, four lignin derivatives, and three types of soils, online with a quantum cascade laser absorption spectrometer (QCLAS). We present the first dataset of continuous measurements of δ15Nbulk (δ15Nbulk ≡ (δ15Nα + δ15Nβ)/2), δ18O, and site preference (SPN2O, SPN2O ≡ δ15Nα − δ15Nβ) of N2O from chemodenitrification in both chemical assays and soils. Considerable amounts of N2O were produced by chemical reduction of NO2−, indicating that chemodenitrification could dominate N2O emission in NO2−-rich environments. The values of SPN2O varied by more than 20‰ in the reactions of sodium nitrite with organic substances. Contrary to the common assumption that SPN2O values are constant for a distinct N2O source process, our results reveal a considerable shift in SPN2O over time for most experiments. The large SPN2O variability might be explained by the multiple pathways with hyponitrous acid or nitramide as N2O precursors. These findings provide important new information to improve our understanding about the dependency of N2O isotopic signatures on N2O production processes.
000866410 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000866410 588__ $$aDataset connected to CrossRef
000866410 7001_ $$0P:(DE-HGF)0$$aIbraim, Erkan$$b1
000866410 7001_ $$0P:(DE-Juel1)142357$$aBrüggemann, Nicolas$$b2
000866410 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b3
000866410 7001_ $$0P:(DE-HGF)0$$aMohn, Joachim$$b4
000866410 773__ $$0PERI:(DE-600)1483679-8$$a10.1016/j.gca.2019.09.018$$gVol. 267, p. 17 - 32$$p17-32$$tGeochimica et cosmochimica acta$$v267$$x0016-7037$$y2019
000866410 8564_ $$uhttps://juser.fz-juelich.de/record/866410/files/Wei_etal_GCA_2019_postprint.pdf$$yPublished on 2019-09-18. Available in OpenAccess from 2021-09-18.
000866410 8564_ $$uhttps://juser.fz-juelich.de/record/866410/files/Wei_etal_GCA_2019_postprint.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-09-18. Available in OpenAccess from 2021-09-18.
000866410 909CO $$ooai:juser.fz-juelich.de:866410$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000866410 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142357$$aForschungszentrum Jülich$$b2$$kFZJ
000866410 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b3$$kFZJ
000866410 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000866410 9141_ $$y2019
000866410 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866410 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866410 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000866410 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOCHIM COSMOCHIM AC : 2017
000866410 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866410 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866410 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866410 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866410 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866410 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866410 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866410 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866410 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000866410 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866410 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000866410 980__ $$ajournal
000866410 980__ $$aVDB
000866410 980__ $$aUNRESTRICTED
000866410 980__ $$aI:(DE-Juel1)IBG-3-20101118
000866410 9801_ $$aFullTexts