001     866410
005     20210130003441.0
024 7 _ |a 10.1016/j.gca.2019.09.018
|2 doi
024 7 _ |a 0016-7037
|2 ISSN
024 7 _ |a 1872-9533
|2 ISSN
024 7 _ |a 2128/23392
|2 Handle
024 7 _ |a WOS:000491872600002
|2 WOS
037 _ _ |a FZJ-2019-05563
082 _ _ |a 550
100 1 _ |a Wei, Jing
|0 P:(DE-Juel1)165707
|b 0
|e Corresponding author
245 _ _ |a First real-time isotopic characterisation of N2O from chemodenitrification
260 _ _ |a New York, NY [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1573824269_22182
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Chemodenitrification can be a substantial abiotic source of nitrous oxide (N2O) in soil. The isotopic signature of N2O from this process could support source partitioning, but it is currently unknown in sufficient detail. In this study, we determined the isotopic composition of N2O, produced by the reaction of nitrite (NO2−) with lignin, four lignin derivatives, and three types of soils, online with a quantum cascade laser absorption spectrometer (QCLAS). We present the first dataset of continuous measurements of δ15Nbulk (δ15Nbulk ≡ (δ15Nα + δ15Nβ)/2), δ18O, and site preference (SPN2O, SPN2O ≡ δ15Nα − δ15Nβ) of N2O from chemodenitrification in both chemical assays and soils. Considerable amounts of N2O were produced by chemical reduction of NO2−, indicating that chemodenitrification could dominate N2O emission in NO2−-rich environments. The values of SPN2O varied by more than 20‰ in the reactions of sodium nitrite with organic substances. Contrary to the common assumption that SPN2O values are constant for a distinct N2O source process, our results reveal a considerable shift in SPN2O over time for most experiments. The large SPN2O variability might be explained by the multiple pathways with hyponitrous acid or nitramide as N2O precursors. These findings provide important new information to improve our understanding about the dependency of N2O isotopic signatures on N2O production processes.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ibraim, Erkan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Brüggemann, Nicolas
|0 P:(DE-Juel1)142357
|b 2
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 3
700 1 _ |a Mohn, Joachim
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.gca.2019.09.018
|g Vol. 267, p. 17 - 32
|0 PERI:(DE-600)1483679-8
|p 17-32
|t Geochimica et cosmochimica acta
|v 267
|y 2019
|x 0016-7037
856 4 _ |y Published on 2019-09-18. Available in OpenAccess from 2021-09-18.
|u https://juser.fz-juelich.de/record/866410/files/Wei_etal_GCA_2019_postprint.pdf
856 4 _ |y Published on 2019-09-18. Available in OpenAccess from 2021-09-18.
|x pdfa
|u https://juser.fz-juelich.de/record/866410/files/Wei_etal_GCA_2019_postprint.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866410
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)142357
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOCHIM COSMOCHIM AC : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21