000866422 001__ 866422
000866422 005__ 20230111074307.0
000866422 0247_ $$2doi$$a10.1093/cercor/bhz324
000866422 0247_ $$2ISSN$$a1047-3211
000866422 0247_ $$2ISSN$$a1460-2199
000866422 0247_ $$2Handle$$a2128/27303
000866422 0247_ $$2pmid$$a32026946
000866422 0247_ $$2WOS$$aWOS:000535911100006
000866422 037__ $$aFZJ-2019-05569
000866422 082__ $$a610
000866422 1001_ $$0P:(DE-Juel1)169634$$aYang, Danqing$$b0$$ufzj
000866422 245__ $$aMuscarinic and Nicotinic Modulation of Neocortical Layer 6A Synaptic Microcircuits Is Cooperative and Cell-Specific
000866422 260__ $$aOxford$$bOxford Univ. Press$$c2020
000866422 3367_ $$2DRIVER$$aarticle
000866422 3367_ $$2DataCite$$aOutput Types/Journal article
000866422 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615193395_2885
000866422 3367_ $$2BibTeX$$aARTICLE
000866422 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866422 3367_ $$00$$2EndNote$$aJournal Article
000866422 520__ $$aAcetylcholine (ACh) is known to regulate cortical activity during different behavioral states, for example, wakefulness and attention. Here we show a differential expression of muscarinic ACh receptors (mAChRs) and nicotinic ACh receptors (nAChRs) in different layer 6A (L6A) pyramidal cell (PC) types of somatosensory cortex. At low concentrations, ACh induced a persistent hyperpolarization in corticocortical (CC) but a depolarization in corticothalamic (CT) L6A PCs via M 4 and M1 mAChRs, respectively. At ~ 1 mM, ACh depolarized exclusively CT PCs via α4β2 subunit-containing nAChRs without affecting CC PCs. Miniature EPSC frequency in CC PCs was decreased by ACh but increased in CT PCs. In synaptic connections with a presynaptic CC PC, glutamate release was suppressed via M4 mAChR activation but enhanced by nAChRs via α4β2 nAChRs when the presynaptic neuron was a CT PC. Thus, in L6A, the interaction of mAChRs and nAChRs results in an altered excitability and synaptic release, effectively strengthening CT output while weakening CC synaptic signaling.
000866422 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000866422 588__ $$aDataset connected to CrossRef
000866422 7001_ $$0P:(DE-HGF)0$$aGünter, Robert$$b1
000866422 7001_ $$0P:(DE-Juel1)131702$$aQi, Guanxiao$$b2$$ufzj
000866422 7001_ $$0P:(DE-Juel1)131703$$aRadnikow, Gabriele$$b3$$ufzj
000866422 7001_ $$0P:(DE-Juel1)131680$$aFeldmeyer, Dirk$$b4$$eCorresponding author$$ufzj
000866422 773__ $$0PERI:(DE-600)1483485-6$$a10.1093/cercor/bhz324$$gp. bhz324$$n6$$p3528–3542$$tCerebral cortex$$v30$$x1047-3211$$y2020
000866422 8564_ $$uhttps://juser.fz-juelich.de/record/866422/files/bhz324-1.pdf$$yOpenAccess
000866422 8767_ $$92019-11-12$$d2019-11-14$$eSubmission fee$$jZahlung erfolgt$$z75 USD, Kostenrückerstattung
000866422 8767_ $$d2020-02-21$$eHybrid-OA$$jDeposit$$lDeposit: OUP$$zH2020 Grant 785907
000866422 8767_ $$8E13666294$$92020-05-17$$d2021-11-18$$ePage charges$$jZahlung erfolgt$$pbhz324$$zBelegnr.: 1200173508   erneut an F geschickt 15.11.2021
000866422 909CO $$ooai:juser.fz-juelich.de:866422$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000866422 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169634$$aForschungszentrum Jülich$$b0$$kFZJ
000866422 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000866422 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131702$$aForschungszentrum Jülich$$b2$$kFZJ
000866422 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131703$$aForschungszentrum Jülich$$b3$$kFZJ
000866422 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131680$$aForschungszentrum Jülich$$b4$$kFZJ
000866422 9130_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000866422 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000866422 9141_ $$y2021
000866422 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866422 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000866422 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCEREB CORTEX : 2017
000866422 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000866422 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866422 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866422 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866422 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866422 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCEREB CORTEX : 2017
000866422 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866422 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000866422 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866422 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000866422 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000866422 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866422 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x0
000866422 980__ $$ajournal
000866422 980__ $$aVDB
000866422 980__ $$aUNRESTRICTED
000866422 980__ $$aI:(DE-Juel1)INM-10-20170113
000866422 980__ $$aAPC
000866422 9801_ $$aAPC
000866422 9801_ $$aFullTexts