000866473 001__ 866473
000866473 005__ 20240711092247.0
000866473 0247_ $$2doi$$a10.1103/PhysRevB.100.054103
000866473 0247_ $$2ISSN$$a0163-1829
000866473 0247_ $$2ISSN$$a0556-2805
000866473 0247_ $$2ISSN$$a1050-2947
000866473 0247_ $$2ISSN$$a1094-1622
000866473 0247_ $$2ISSN$$a1095-3795
000866473 0247_ $$2ISSN$$a1098-0121
000866473 0247_ $$2ISSN$$a1538-4489
000866473 0247_ $$2ISSN$$a1550-235X
000866473 0247_ $$2ISSN$$a2469-9950
000866473 0247_ $$2ISSN$$a2469-9969
000866473 0247_ $$2Handle$$a2128/23390
000866473 0247_ $$2altmetric$$aaltmetric:60105986
000866473 0247_ $$2WOS$$aWOS:000478991300002
000866473 037__ $$aFZJ-2019-05583
000866473 082__ $$a530
000866473 1001_ $$0P:(DE-Juel1)169962$$aWeikamp, M.$$b0
000866473 245__ $$aEffect of shear-coupled grain boundary motion on coherent precipitation
000866473 260__ $$aWoodbury, NY$$bInst.$$c2019
000866473 3367_ $$2DRIVER$$aarticle
000866473 3367_ $$2DataCite$$aOutput Types/Journal article
000866473 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573823551_22184
000866473 3367_ $$2BibTeX$$aARTICLE
000866473 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866473 3367_ $$00$$2EndNote$$aJournal Article
000866473 520__ $$aWe examine the interaction between precipitates and grain boundaries, which undergo shear-coupled motion. The elastic problem, emerging from grain boundary perturbations and an elastic mismatch strain induced by the precipitates, is analyzed. The resulting free elastic energy contains interaction terms, which are derived numerically via the integration of the elastic energy density. The interaction of the shear-coupled grain boundary and the coherent precipitates leads to potential elastic energy reductions. Such a decrease of the elastic energy has implications for the grain boundary shape and also for the solubility limit near the grain boundary. By energy minimization we are able to derive the grain boundary shape change analytically. We apply the results to the Fe-C system to predict the solubility limit change of cementite near an α-iron grain boundary.
000866473 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000866473 542__ $$2Crossref$$i2019-08-06$$uhttps://link.aps.org/licenses/aps-default-license
000866473 588__ $$aDataset connected to CrossRef
000866473 7001_ $$0P:(DE-Juel1)130979$$aSpatschek, R.$$b1$$eCorresponding author$$ufzj
000866473 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.100.054103$$bAmerican Physical Society (APS)$$d2019-08-06$$n5$$p054103$$tPhysical Review B$$v100$$x2469-9950$$y2019
000866473 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.100.054103$$gVol. 100, no. 5, p. 054103$$n5$$p054103$$tPhysical review / B$$v100$$x2469-9950$$y2019
000866473 8564_ $$uhttps://juser.fz-juelich.de/record/866473/files/PhysRevB.100.054103.pdf$$yOpenAccess
000866473 8564_ $$uhttps://juser.fz-juelich.de/record/866473/files/PhysRevB.100.054103.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866473 909CO $$ooai:juser.fz-juelich.de:866473$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130979$$aForschungszentrum Jülich$$b1$$kFZJ
000866473 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000866473 9141_ $$y2019
000866473 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866473 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866473 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000866473 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000866473 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866473 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866473 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866473 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866473 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866473 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866473 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866473 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866473 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866473 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000866473 9801_ $$aFullTexts
000866473 980__ $$ajournal
000866473 980__ $$aVDB
000866473 980__ $$aUNRESTRICTED
000866473 980__ $$aI:(DE-Juel1)IEK-2-20101013
000866473 981__ $$aI:(DE-Juel1)IMD-1-20101013
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02811698
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02670416
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.94.134106
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.3390/met8040219
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.78.275
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0001-6160(53)90062-5
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0001-6160(54)90175-3
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2004.02.048
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2006.08.004
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/14786430500536909
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.024110
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10853-010-5233-6
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2012.08.018
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2011.05.042
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep25427
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep23602
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.114.105501
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.94.144106
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.095501
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.064106
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2009.07.036
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2006.10.045
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.actamat.2012.10.005
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00161-015-0424-7
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1023/A:1004587425006
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0001-6160(83)90202-X
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02656707
000866473 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmatprotec.2008.03.008