000866483 001__ 866483
000866483 005__ 20210130003451.0
000866483 0247_ $$2doi$$a10.1021/acs.jpclett.9b02231
000866483 0247_ $$2altmetric$$aaltmetric:68170477
000866483 0247_ $$2pmid$$apmid:31573816
000866483 0247_ $$2WOS$$aWOS:000495805100002
000866483 037__ $$aFZJ-2019-05585
000866483 082__ $$a530
000866483 1001_ $$0P:(DE-Juel1)165181$$aYang, Xiaosheng$$b0
000866483 245__ $$aCoexisting Charge States in a Unary Organic Monolayer Film on a Metal
000866483 260__ $$aWashington, DC$$bACS$$c2019
000866483 3367_ $$2DRIVER$$aarticle
000866483 3367_ $$2DataCite$$aOutput Types/Journal article
000866483 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604675983_3506
000866483 3367_ $$2BibTeX$$aARTICLE
000866483 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866483 3367_ $$00$$2EndNote$$aJournal Article
000866483 520__ $$aThe electronic and geometric structures of tetracene films on Ag(110) and Cu(110) have been studied with photoemission tomography and compared to that of pentacene. Despite similar energy level alignment of the two oligoacenes on these surfaces revealed by conventional ultraviolet photoelectron spectroscopy, the momentum-space resolved photoemission tomography reveals a significant difference in both structural and electronic properties of tetracene and pentacene films. Particularly, the saturated monolayer of tetracene on Ag(110) is found to consist of two molecular species that, despite having the same orientation, are electronically very different—while one molecule remains neutral, another is charged because of electron donation from the substrate.
000866483 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000866483 588__ $$aDataset connected to CrossRef
000866483 7001_ $$0P:(DE-HGF)0$$aEgger, Larissa$$b1
000866483 7001_ $$0P:(DE-HGF)0$$aFuchsberger, Jana$$b2
000866483 7001_ $$0P:(DE-HGF)0$$aUnzog, Martin$$b3
000866483 7001_ $$0P:(DE-HGF)0$$aLüftner, Daniel$$b4
000866483 7001_ $$0P:(DE-HGF)0$$aHajek, Felix$$b5
000866483 7001_ $$0P:(DE-HGF)0$$aHurdax, Philipp$$b6
000866483 7001_ $$0P:(DE-Juel1)169309$$aJugovac, Matteo$$b7
000866483 7001_ $$0P:(DE-Juel1)162281$$aZamborlini, Giovanni$$b8
000866483 7001_ $$0P:(DE-Juel1)145012$$aFeyer, Vitaliy$$b9
000866483 7001_ $$0P:(DE-HGF)0$$aKoller, Georg$$b10
000866483 7001_ $$00000-0002-8057-7795$$aPuschnig, Peter$$b11
000866483 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b12
000866483 7001_ $$0P:(DE-HGF)0$$aRamsey, Michael G.$$b13
000866483 7001_ $$0P:(DE-Juel1)128790$$aSoubatch, Serguei$$b14$$eCorresponding author
000866483 773__ $$0PERI:(DE-600)2522838-9$$a10.1021/acs.jpclett.9b02231$$gVol. 10, no. 21, p. 6438 - 6445$$n21$$p6438 - 6445$$tThe journal of physical chemistry letters$$v10$$x1948-7185$$y2019
000866483 8564_ $$uhttps://juser.fz-juelich.de/record/866483/files/acs.jpclett.9b02231-1.pdf$$yRestricted
000866483 8564_ $$uhttps://juser.fz-juelich.de/record/866483/files/acs.jpclett.9b02231-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866483 909CO $$ooai:juser.fz-juelich.de:866483$$pVDB
000866483 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165181$$aForschungszentrum Jülich$$b0$$kFZJ
000866483 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169309$$aForschungszentrum Jülich$$b7$$kFZJ
000866483 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162281$$aForschungszentrum Jülich$$b8$$kFZJ
000866483 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145012$$aForschungszentrum Jülich$$b9$$kFZJ
000866483 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b12$$kFZJ
000866483 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128790$$aForschungszentrum Jülich$$b14$$kFZJ
000866483 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000866483 9141_ $$y2019
000866483 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM LETT : 2017
000866483 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866483 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866483 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866483 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866483 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866483 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866483 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866483 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866483 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYS CHEM LETT : 2017
000866483 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000866483 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x1
000866483 980__ $$ajournal
000866483 980__ $$aVDB
000866483 980__ $$aI:(DE-Juel1)PGI-6-20110106
000866483 980__ $$aI:(DE-Juel1)PGI-3-20110106
000866483 980__ $$aUNRESTRICTED