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Fig. 1. Electron optical layout of different configurations of the hemispherical deflection analyzer (HDA) for imaging applications. a) Single HDA. b) Aberration
compensated double HDA arrangement with an inverting transfer lens. ¢) Double pass HDA with a non-inverting transfer lens. Thick dotted lines mark the image
planes as projected on the 2D imaging detector. Arrows (s,) denote the electron distributions in the entrance and exit slit planes.

images, the spatial intermediate image of the sample surface is located
in the plane indicated by the dotted line in Fig. 1a, and an image of the
transverse momentum distribution of the photoelectrons is projected
onto the entrance slit of the analyzer.

The two-dimensional spatial coordinates (x, y) are therefore en-
coded in the entrance angles (8o, @) of the electrons passing through
the slit. As outlined in Ref. [3] this relation is reversed when recording
momentum images. The momentum microscope projects a real space
image onto the entrance slit of the electron analyzer, such that the two-
dimensional momentum distribution of the photoelectrons (k,, k) is
encoded in the two orthogonal entrance angles (o, ap). In general, the
intermediate image in the entrance plane of the analyzer is always re-
ciprocal to the image that shall be recorded on the detector of the
microscope. In that way, the small entrance stilt does not restrict the
field of view of the measured image.

Under the assumption that the entrance angles of the electron tra-
jectories are preserved upon passing through the analyzer, the exit lens
can recover the 2D image information after the energy selection, and
project the image plane onto the detector. As was pointed out, however,
for instance in Ref. [7], the angle a, is not strictly conserved, but is
subject to the a® aberration term inherent to the HDA. This effect would
limit the obtainable image resolution.

Fig. 1b shows the scheme of an imaging double hemispherical
analyzer. The energy selection is, as in (a), entirely performed by the
first HDA. The compensation of the o aberration of the analyzer is then
accomplished by an inverted beam path in the second HDA [8,9].
Electrons that leave the 1° HDA through the exit slit are projected into
the entrance slit of the 2"¢ HDA by an inverting transfer lens with
magnification M = — 1. In this scheme, electron trajectories correspond
to closed Kepler orbits, such that perfect refocusing of electron trajec-
tories at the exit of the double HDA is obtained. In the exit plane of the
274 HDA therefore also the energy dispersion vanishes. Refocusing is
not limited to the spatial coordinates, but also with respect to the time-
of-flight of the electrons inside the analyzer, such that the ToF does not
depend on the entrance angle, i. e., the position in the 2D image [10].
Together with straight drift sections therefore a completely isochronous
analyzer can be realized [11].

Fig. 1c shows a second type of a double HDA arrangement, which
does not employ the aforementioned aberration compensation. In
contrast to Fig. 1b, the transfer lens located between the two hemi-
spheres is non-inverting, i. e., with a magnification of M = 1, in the case
of two identical hemispheres [12]. Compared to the aberration com-
pensated analyzer, this setup results in a double pass arrangement,
where the dispersion of both analyzers adds up, resulting in an im-
proved energy resolution [13]. The energy of the transmitted electrons
is then defined by the entrance slit of the 1° HDA and the exit slit of the

2" HDA. Using a suitable transfer lens between the hemispheres further
allows to switch between the aberration compensated configuration in
Fig. 1b and the double pass configuration in 1c.

Here, we discuss the imaging properties of the hemispherical de-
flection analyzer based on analytical solutions of the electron trajec-
tories. Including the effect of the fringe fields at the entrance and exit of
the analyzer, we show that refraction leads to a full conservation of the
trajectory angle a. This previously overlooked effect eliminates the o®
aberration from the energy filtered images and allows for more compact
imaging energy filters for momentum microscopy or photoelectron
emission microscopy. We present first experimental results of the new
double pass configuration of the double HDA for the momentum mi-
croscope, resulting in unsurpassed energy resolution and measurement
efficiency.

2. Electrons in the hemispherical analyzer

First of all, we describe the electron trajectories inside the hemi-
spherical electron analyzer in an analytical model. Fig. 2a shows the
definition of coordinates inside the analyzer. Due to the spherical
symmetry, a spherical coordinate system is used, with r(¢) being the
radius from the center as a function of the deflection angle . The start
radius at ¢ = 0 and the radius after ¢ = 180° deflection is ry and ry,
respectively. The starting angle within the plane of motion is agy (see
Fig. 2b), and f3p perpendicular to this plane (see Fig. 2c). Without loss of
generality, the motion of electrons always takes place within the plane
shown in Fig. 2a, such that the complete electron trajectory is given by r
().

The electron motion inside the analyzer is governed by the ~ %
potential of the spherical electrodes:

Ro
Uur)=U—,
=07 M
where Ry is the nominal mean radius and U, < 0O the electrostatic po-
tential at the mean radius. The electrostatic potential of the inner and
outer electrodes then is given by
R R
U=U7" Ui=U"
R; Rq (2)
The solution of the equation of motion of a particle in a ~ % po-
tential is a well know problem of classical mechanics. In general, the
trajectories are given by conic sections, whereas the bound solutions,
i. e., with finite r, are Kepler ellipses. Therefore, we will here only
briefly recall the solution of the equation of motion as far as it is re-
levant for analyzing the imaging properties of the electron spectro-
meter. For a detailed description of the Kepler problem, we refer to
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Fig. 2. a) Spherical coordinate system of the hemispherical analyzer. Capital
letters denote the nominal center radius, Ry, and the radii of the inner and outer
hemispherical electrode, R; and R,, respectively. The electron trajectory with
radius r = r(p) is described in spherical coordinates with the start radius ro, the
angle @, and the exit radius r,,. b) Starting angle a, expressed by the radial (+)
and angular (¢) velocity. ¢) The starting angle f, defines the plane of motion in
the spherical symmetric potential.

classical mechanics textbooks.

The formulation of the equation of motion becomes particularly
straightforward by identifying the fundamental conservation laws of
the system. First of all, this is the conservation of the total energy, E;:

Eow=U+T=const. & E4,=0, 3

with the potential energy U and the kinetic energy T. As outlined in
Fig. 2b, the velocity of the electrons can be written as v = /F? + r’p?
using radial coordinates. Then the kinetic energy becomes

1 1
T = —m,v? = —m,(i? + r’p?),
S 5 o( %% )
with the electron mass m,.
Due to the spherical symmetry of the analyzer, also the total angular
momentum is conserved.

L=myr*p=const. & L=0 5)

2 = m2r*p? = 2m rZ(T - ﬂ1'*2)
e I'P e 2 (6)
Comparing Egs. (4) and (5), one can then write the kinetic energy as

2
r7=_F ~ 4+ Dejz
2m,r 2 @)

By inserting Eqs. (1) and (7) into Eq. (3) we obtain the equation of
motion of the electrons in the hemispherical analyzer:

[Ty Men S
Eo = Uy + 3 12 and E =0, ®)
with the effective potential
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Ug = Uy— + .
& T 2mer? (©)]
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Using Eq. (7), we can replace the angular momentum L by the
constant kinetic energy T, of the circular orbit, and obtain the result

Ry an

Electrons that fly through the hemispherical analyzer on a circular
trajectory with a radius equal to R, are nominally allowed to pass
through the exit slit of the analyzer, and being recorded on the detector.
This condition therefore defines the pass energy, Epy;, of the electrons
for normal incidence (cty = 0). Therefore, choosing ry = R, and the ki-
netic energy Ty = Ep,s, We obtain the pass energy of the analyzer for a
given value of the electrode potentials:

U
Epgss = _7 12)

The respective potentials of the inner and outer hemispherical

electrode, required to set this pass energy, are then given by Eq. (2).

2.2. General solution of the equation of motion

For the general description of the imaging properties of the hemi-
spherical analyzer, we need to find the solution r(¢) of Eq. (8) for the
start parameters ao, ro, and Ty at the entrance of the analyzer at ¢ = 0.
As shown in Fig. 2b, this also defines the start velocities ¢, and 7y by

. [2Tp 1 i . [2T
@, = cosag, [— — and fp = sinay- | s
\" me npy V me (13)
and the angular momentum
I? = 2m, 1§ Ty cos® ay. 14

A detailed solution of the equation of motion of a particle in the %
potential is, for instance, given in Ref. [14]. In the Lagrange formalism
of classical mechanics, the solution can be obtained by solving the
differential equation

L dt

dp _dpdt _ dt
m,r2dr’ (15)

dr — dtdr

The derivative 7 = % that appears in this expression is obtained from
Eq. (8):

Ry 2

dr [ 2
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The solution of the electron trajectory then can be directly obtained
by integration of Eq. (15):

L
¢= f dr / R 12
rz\/‘ZmeEm[ — 2meU07° -3 a7)

Eq. (17) can be solved using common tabulated integrals. For in-
stance, the solution of Eq. (17) can be also easily obtained by using the
substitution u = % and integration over [du [15]. The result then de-
fines the electron trajectory r(¢) as a function of the deflection angle ¢
inside the analyzer, where ¢’ is the constant integration parameter:

[ 2E, I? Z 1

1+ cos(p + ¢') | +1 =
(¢ W\JmerZRg

m.Uy Ry r (18)

This expression still contains the constants for the total energy and
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For the following discussion, it is useful to introduce the di-

mensionless variables p and 7 for the radius and kinetic energy, re-
spectively:

p:L and 7= T :—E, withn, p >0
RO Epasx UO (20)

With this definitions, Eq. (19) can be simplified to

p__ x
oo l+ecos(p +¢)’ 21

where we use the additional abbreviations

x Polpcos’ay,  and

€

\/(1 — PoMo)* + (2047 — Poz%z)smz Ao - 22)

Since the electron trajectory starts at ¢ = 0 with the radius
Po = To/Ro, we can now determine the integration parameter as
ecos(¢’) = x — 1, thus describing the complete electron trajectory in-
side the analyzer. For discussing the imaging parameters of the ana-
lyzer, in the following, we look at the solution at the exit of the ana-
lyzer, i. e., after a deflection angle of 180°. Then, the radius p, at the exit
of the analyzer, and the radius change Ap are given by

Pr _ x 2

= = -1
P 1—cecos(e) 2—x 23)
and

Bbo__2 _,

po 2-x (24)

As we can see from this result, the position at which the electron
arrives at the exit of the analyzer depends first of all on the kinetic
energy 1o, and also on the starting angle a. In particular the angular
dependence is given by cos %y, such that electrons with a non-zero start
angle always arrive at a smaller radius compared to electrons with the
same energy, but normal incidence (&t = 0). This result is known as the
a? aberration of the electrostatic HDA, and as we will see below, has
important implications on the energy resolution of the analyzer.

The result further shows that the image obtained after a deflection
angle of 180° in the exit plane of the analyzer is dispersed in energy
along the radial direction. Due to the spherical symmetry, however, no
dispersion occurs in the second in-plane direction, normal to the r — ¢
plane. Therefore, placing a two-dimensional detector in the exit plane
of the analyzer — or projecting a direct image of this plane onto the
detector — is not suitable to record a two-dimensional (x, y) electron
microscope image. Instead the detector image will show one spatial
coordinate along the non-dispersive direction, and the electron energy
spectrum along the radial, dispersive direction.

Therefore, as stated above, the two-dimensional image information
in a (momentum) electron microscope is encoded as the entrance angle
of electrons into the analyzer such that (x, y)—(8,, ao). For the image
aberration that applies in that case, we have to consider how the tra-
jectory angle a, in the exit plane of the analyzer is related to the
starting parameters pg, 70, and qp. Since tana = %Z—;, the trajectory
angle a is obtained by calculating the derivative of Eq. (21) with respect
to the deflection angle ¢:

do _ esin(p +¢)
dop 1+ ecos(p + @) (25)

For ¢ = 7, we therefore obtain

The angle a, at the exit of the hemisphere therero
only on the entrance angle a,, but also on the position p,. The latter
contains a non-trivial dependence on the starting radius po, the starting
angle ay, and the kinetic energy 7. At the first glance, this results
therefore suggests an image aberration that arises due the a? aberration,
even when the image information is transferred through the angular
coordinate. This result up to here is the same as was derived earlier in
Ref. [7], and termed sphere aberration, limiting the image resolution in
microscopy applications of the hemispherical deflection analyzer.

3. Hemispherical analyzer with slits

So far, we have described the movement of an electron inside the
radial potential of the hemispherical analyzer. This description shows
important properties of the electron analyzer, such as the energy dis-
persion, and the aberration with respect to the entrance angle a,. In
order to consider the image aberrations in the case of the application in
an electron microscope, however, an important aspect has so far been
neglected. This is the transition of the electrostatic potential when the
electrons enter the analyzer at the entrance slit, and when the electrons
leave the analyzer at the exit slit. In general, we assume for the fol-
lowing considerations that the entrance- and exit-slits of the analyzer
have a finite width in the radial direction.

At the entrance slit, as well as at the exit slit, electrons pass from a
constant potential U* = U, over to the spherically symmetric potential
U(r) ~ % Depending on the radius r, electrons therefore are accelerated
or decelerated upon entering the analyzer. Fig. 3 illustrates this re-
fraction at the slits, which happens both, at the entrance and exit of the
analyzer. The entrance angle aj outside of the analyzer therefore
changes due to the refraction towards larger or smaller values ag for
r > Ry or r < Ry, respectively. Here and in the following, starred vari-
ables always refer to values outside, and their non-starred counterpart
to the respective value inside of the analyzer.

U*=Ug=const.

Fig. 3. Refraction of electron trajectories at the transition from a constant
electrostatic potential U* = U, outside of the analyzer to a spherical symmetric
potential U ~ % inside of the analyzer. Depending on the radius, the angle ag
inside the analyzer becomes larger or smaller compared to the angle a; outside
the analyzer.
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where n = 0, 7 at the entrance and exit of the analyzer, respectively.
Outside of the analyzer the kinetic energies of the electrons are equal
due to energy conservation, such that 7 = n* = 7.

When the potential transition at the slit takes place only in the di-
rection normal to the slit plane, the transverse momentum of electrons
is conserved, such that /=r*. Then, from Eq. (13) follows that the tra-
jectory angle changes as

sin?a,, = sin? oc,Tl.

M (29

With this result, we can now reformulate the expression for the analyzer
dispersion that we have derived in Eq. (24) using the angle o} outside
of the analyzer. This results in the more useful expression

20 _ 2 _,

po P2 =7+ ysintay) (30)

using the true entrance angle a; into the analyzer.

In the next step, we derive the exit angle a after the electron has
passed the exit slit. First of all, the expression for the angular mo-
mentum in Eq. (14) applies both, at the entrance and at the exit of the
analyzer. Due to the conservation of angular momentum, it therefore
follows that p, /1, cosay = p, /7, cosa,. When we insert this relation
into the expression for the sphere aberration of the angles in Eq. (27)
we get
sina, = — ‘@ sin a,

\ 7 @B
which has a similar form as Eq. (27). However, inserting now Eq. (29)
for the refraction at the slit for sin ay and sin a,;, we get

sina) = —sinag. (32)

This result reveals that the refraction of electrons at the potential
transition at the slits leads exactly to the cancellation of the sphere
aberration term for the trajectory angle a. Without the refraction effect,
the sphere aberration in Eq. (27) would only vanish in the hypothetical
limiting case of zero-width slits, i.e., for o, = p,. However, Eq. (32)
shows that even for a finite slit width the fringe field, introduced by the
transition of the electrostatic potential at the entrance- and exit-slits,
leads to a conservation of the trajectory angle aj = —a*. Therefore, our
result shows that the hemispherical analyzer does not introduce an
image aberration, as long as the image information is encoded as the
entrance angle, or alternatively as the transverse momentum (i. e., 7*)
of the incoming electron ensemble.

The fringe fields that arise due to the transition between the sphe-
rical U (r) ~ % potential inside the analyzer to the constant potential U*
outside the analyzer are known to lead to a focusing of the trajectories
in the entrance and exit regions [16]. This focusing effect shifts the
focal point to deflections angles ¢ < 180°, such that the crossover of the
trajectories lies inside the analyzer in front of the slit plane [17,18].
This focusing effect is directly related to the refraction of the trajec-
tories described here. In Fig. 3, this leads to a crossover of a parallel set
of trajectories inside the HDA. The canceling of image aberrations thus
is a direct consequence of the presence of the fringe field, as long as the
entrance angle af stays sufficiently small such that higher order aber-
rations by the fringe fields can be neglected. As we will shown below,
this applies well for entrance angles up to several degrees.

We note that the same result can be also obtained without the de-
tailed calculation of the refraction angles, but by considering the fun-
damental conservation laws of the system. Due to energy conservation,
we obtained outside of the analyzer 7; =7’ =7. In addition, as

4. Energy resolution

The energy resolution of the analyzer is determined by the width of
the entrance-slit located at ¢ = 0 and exit-slit located at ¢ = 180°. The
width of the slits are d; and d, respectively. In dimensionless variables,
the slit width then is given by

Ro Ry (33)

When both slits are located symmetric with respect to the nominal ra-
dius Ry the possible range of entrance and exit radii, i. e., of those
electrons that are allowed to pass through the slit, is then given by

o1 5

po=[1-— 14+,

1 52 52
2

and pﬂ—[l—?,l"r?] (34)

For simplicity, we assume that the slits have sharp edges. This is the
case when the roughness of the slit edge, and the thickness of the slit is
much smaller than the width d of the slit. In that case, the cutoff of
electrons at the slit edge becomes a step function as displayed in Fig. 4a.

Only those electrons are transmitted through the analyzer that have
a radial coordinate within the interval of the allowed start radius po,
and after a deflection angle of 180° arrive at a p, lying within the in-
terval of the allowed exit radius. Fig. 4b shows the resulting transmis-
sion function in this model of ideal sharp slits. The transmission can be
described as a function of the radial dispersion Ap, as defined above in
Eq. (30), Tr = Tr(Ap). From Fig. 4b we estimate the full width at half
maximum (FWHM) of Tr(Ap) as Appysn, ~ 51252 + \@I. The best ef-
fective transmission for a given FWHM is obtained for equally wide
slits, §7 = 85. In this case, we can approximate the FWHM as

a ATr
P : y £2 ~
, |
> p
Po Px
b “Tr
_|8:-0,] 6,62
271 [ 271
T T > Ap
0,19, 0 0,+0,
2 2

Fig. 4. a) Ideal transmission, Tr, through the entrance and exit slits, as a
function of the radial coordinate. b) Effective transmission function of the
analyzer as function of the change of the radial coordinate Ap upon 180° de-
flection.
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dsin“ag

where the partial derivatives 3% and
P, =P, = 1 and sinag = 0.

Inserting Eq. (30), this evaluates to dn = %dp + dsin’a, where
dp = Appyyy ~ @ and for small entrance angles we use the ap-
proximation d sin?ag & (ag na)?. Here, ag q, is the maximum value of
the entrance angle, which lies in the interval ay = [—a§ naxs X4 max)- The
energy resolution of the analyzer then is given by

AE _ 151 + 52
EPass 2 2

* 2
+ A, max

37

4.1. Energy resolution of the imaging HDA

The energy resolution given in Eq. (37) applies for conventional
analyzers that integrate over the complete angular interval
a¢ = [—ag mae %mac]- This is the case for conventional, non-imaging
electron spectrometers. For such spectrometers the exit slit is eventually
replaced by a 2D electron detector to record simultaneously the energy
spectrum that is projected in the exit plane [5]. In the case of such angle
integrating spectrometers, the distribution of entrance angles + ag 4,
limits the ultimate energy resolution. An improvement of the energy
resolution then requires not only to reduce the width of the entrance
and exit slits, but also to restrict the accepted angular interval + ag .,
at the expense of the transmission of the spectrometer.

This expression, however, does not apply to imaging energy ana-
lyzers. As we have already seen above, the imaging electron analyzer
maps the angular coordinate + « to the spatial coordinate =+ y on the
image detector that follows behind the exit slit. When we assume that
one resolves about 400 image points across the diagonal of the detector,
the angular interval for each point becomes dag ~ a(’zg;“x This value
becomes negligible small for typical angular intervals of the transferred
image in the order of ag,. ~ 3°. In Eq. (36) we therefore insert
dsin’aj = 0, and the energy resolution of the imaging analyzer be-
comes for each point in the image

AE _1514‘52

EPass 2 2 (3 8)

Nevertheless, since each point in the image along the y coordinate
corresponds to a different o the 2D image recorded on the detector
does not strictly correspond to a constant kinetic energy of the elec-
trons. The angular dependence of the kinetic energy with (Ap = 0 and
P, = 1) that can pass the analyzer is given by Eq. (30):

1

¢ ()= ———m1+(aF)?
nPaAs( 0) 1 —sinza(;“ ( 0) (39)

The contribution of terms of @ (ag)* is less than 0.1% for entrance
EPusx(Of(f)
Epass(ag = 0)
can be interpreted as the effective pass energy that varies over the

image field as the entrance angle o varies.

Fig. 5 shows the variation of the effective pass energy as function of
ag. For af =0 the energy of the transmitted electrons equals the
nominal pass energy as defined above. For all other entrance angles,
electrons need an energy larger than the nominal pass energy in order
to pass through the analyzer. The figure shows that this variation of the
effective pass energy is in the order of up to 0.3% for the range of
entrance angles between — 3° and + 3°. At the same time, error bars
indicate the energy resolution at each image point as derived from

angles = 10", and thus can be neglected. The value 7, =

pas|

L
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Fig. 5. Nonisochromaticity as a function of the entrance angle ctj (solid line).
The bars indicate the energy resolution at each image point as in Eq. (38). The
left scale displays the effective pass energy 7, (ay), whereas the nominal pass
energy corresponds to = 1. The right scale shows the energy shift relative to a
pass energy of Epgs = 50 eV.

Eq. (38) with a slit width of §; » = 0.2% of the mean radius, i. e., a slit
width of 0.2 mm for an analyzer with Ry=100 mm. For such para-
meters, the energy resolution is considerably better than the variation
of the pass energy, and the non-constant pass energy needs to be con-
sidered. If the slit width is increased to values of the order of 1% of the
analyzer radius, the («f)? term becomes negligible compared to the
energy resolution defined by the slits. In the case of the momentum
microscope, the size of the entrance slit, §;, demagnified by the mi-
croscope imaging column, also defines the analyzed area on the sample
surface [3].

The effect of the pass energy being not constant over the image is
often also termed nonisochromaticity, generally describing the energy
variation over the field of view of an imaging energy analyzer. In the
context of high resolution transmission electron microscopy (TEM), the
nonisochromaticity represents a well known image aberration of the
electron energy filter. However, the effect usually affects all types of
imaging electron energy analyzers. In the past, much effort has been
taken to optimize energy filters for TEM application also with respect to
the nonisochromaticity [20]. For instance, a filter with a particularly
low variation of the energy over the image is the MANDOLINE filter
[21] with a negligible nonisochromaticity of only 10 meV.

The origin of the nonisochromaticity are non-vanishing aberration
terms in the energy dispersive plane of the analyzer. For the hemi-
spherical analyzer this comes about the ay dependent terms in Eq. (21).
The same effect that leads to the nonisochromaticity of the imaging
analyzer, likewise leads to a degradation of the energy resolution for
non-imaging spectrometers for finite acceptance angles. In this context
it has been previously proposed that refocusing of trajectories with
different a, can be achieved by biasing the electrode potentials [22] or
by displacing the entrance slit [22,23]. The angle dependent term in
Eq. (37) then might be compensated by the asymmetric fringe fields.
For imaging analyzers, such an approach is, however, complicated by
the broken symmetry and asymmetric fringe fields, that can introduce
higher order aberration terms.

Fig. 6a shows the effect of the nonisochromaticity on the intensity
distribution in the measured Fermi surface contour of a W(110) single
crystal. The experiment was performed using s-polarized photons with a
photon energy of hv = 50 eV incident along the k, axis. The image was
recorded with a fixed setting of the kinetic energy at a pass energy of
the analyzer of 50 eV, and a slit width of 200 pm. This closely resembles
the relative magnitude of the energy resolution and the non-
isochromaticity across the image as in the discussion above. In the
experiment, the energy resolution is of the order of 60 meV for the
width of the Fermi edge measured at a temperature of 130 K.

Due to the variation of the effective pass energy along the y-axis, the
as-measured Fermi surface contour fades out towards the top and
bottom of the momentum disk. While the center at k, =0 has an energy
set to the nominal Fermi level, Ef, the effective electron kinetic energy



| | | [ 1 | 1
23 ] 0 1 22-2 =l 0 1 2
k (A k (A
C a, (%) d o, (%)
2 -1 0 2 2 -1 0 2
R
..IH..~ MKIIIJ
1 2 -2 -1

intensity (arb. units)

Fig. 6. Fermi surface contour of W(110) measured with s-polarized light with a
photon energy of hv = 50 eV, and at a pass energy of the double hemispherical
energy filter of the 50 eV. a, ¢) As measured Fermi surface contour and spectral
function along the k, axis. The dotted line in (c) indicates the Fermi edge as a
guide to the eye. b, d) The same after applying the correction for the parabolic
energy shift 7y . as function of k, to the as measured data. Intensities are dis-
played on a linear gray scale. The data has been measured at the NanoEsca
beamline [19] at the Elettra synchrotron, Trieste, Italy.

towards larger and smaller k, is larger than Ey. This effect is best seen in
the band dispersion along the k, axis in Fig. 6¢c, where the Fermi edge is
parabolically bent downwards. The maximum shift of the Fermi edge in
this measurement is —100 meV, slightly smaller than the value of
—137 meV that is expected for . = =3°. This is due to the smaller
range of entrance angles in the experiment, where the measured re-

ciprocal space field of view of =+ 1.9 A-! corresponds to
A max = £2. 6.
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Fig. 7. Fermi surface contour of the Au(111) surface measured in the momentum microscope using illumination with He-I (hv
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5. The double pass imaging energy filter

Taking into account the effect of the entrance and exit slits of the
HDA, we have shown that the entrance angle «g, outside of the ana-
lyzer, is directly transferred from the entrance to the exit of the hemi-
sphere. The a term in the image aberration therefore vanishes already
for a single HDA. In addition, this finding enables the use of a double
HDA arrangement in a double pass configuration, as shown in Fig. 1c.
Due to the geometrical similarity of the double HDA setup in the case of
an aberration compensated setup, or in the case of the non-aberration
corrected double pass setup, we compare the performance of these two
imaging energy filters.

Experiments have been carried out using the momentum micro-
scope setup described in Ref. [3]. In the first case, the transfer lens
between both hemispheres is of the inverting type, with a magnification
of M= —1. This setup therefore uses the aberration compensated
configuration of the double HDA setup, shown in Fig. 1b, such that only
the first HDA equipped with 0.2 mm wide entrance and exit slits con-
tributes to the energy resolution.

Fig. 7a shows the Fermi surface contour of a Au(111) single crystal
surface, measured by illumination with He-I radiation (hv=21.22 eV)
from a focused helium discharge lamp (SPECS UVS-300). The mea-
surement was taken with the analyzer set to a pass energy of 50 eV. The
nominal energy resolution given by Eq. (38) is AE = 33 meV, in good
agreement with the experiment [3]. Under this condition, the mo-
mentum disk shown in Fig. 7a was integrated over a total measurement
time of 25 minutes [3].

In the second experiment, the transfer lens of the double HDA was
modified, such that a non-inverted image is projected into the entrance
of the 2nd HDA. As shown in Fig. 1lc, the transfer lens then consists of
two telescopic sections instead of one in the case of the inverting lens.
In addition, the 0.2 mm wide energy selection slit needs to be moved
from the original location at the exit of the 15 HDA to the exit of the 2°¢
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Measurement with energy analyzer set to the aberration compensated scheme at a pass energy of 50 eV and integration time of 25 min. Data as in [3]. b) The same
measurement, but with the analyzer set to double pass operation and a pass energy of 30 eV and integration time of 10 min. Image rotation by 180° is due to the non-
inverting transfer lens compared to (a). Intensities are displayed on a linear gray scale.
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Fig. 8. a) Measured Fermi edge (symbols) at a sample temperature of 20 K
using the aberration compensated configuration of the double HDA energy filter
at a pass energy of 15 eV. The solid line shows a fit with a FWHM of
AE=12 meV. b) The same, but using the double pass configuration at a pass
energy of 30 eV. The fit results in AE=13 meV.

HDA, while the free aperture between both HDAs needs to be large
enough to not block the electrons passing from one HDA to the other.

Fig. 7b shows the measurement of the Au(111) Fermi surface con-
tour using a pass energy of 30 eV and integrating the data over a
duration of 10 minutes. Both images show a very similar resolution,
where the Au states appear sharper in the image measured using the
double pass mode. This is due to the better energy resolution of the
analyzer which is nominally AE=10 meV using Eq. 38 with an effective
radius of the double pass analyzer of R{°*’* =300 mm. To obtain the
same energy resolution in the aberration compensated configuration
would require a pass energy of 15 eV. Despite the much better energy
resolution compared to Fig. 7a, the measurement took only about half
of the acquisition time.

For the aberration compensated configuration an ultimate energy
resolution of 12 meV has been measured for 15 eV pass energy (see
Fig. 8a) [3]. In the case of the double pass configuration, we find here a
comparable ultimate resolution of 13 meV at 30 eV pass energy, as
displayed in Fig. 8b by the energy profile of the Fermi edge of the Au
(111) sample. Taking into account the finite width of the Fermi edge at
the sample temperature of 20 K, these values are in good agreement
with the expected resolution.

The new double pass configuration of the imaging HDA allows to
use a twice larger pass energy in order to obtain the same energy re-
solution as with the conventional double HDA. Since the transmission
of the analyzer for a given slit size scales with the square of the pass
energy, Tr ~ (Epass), the double pass configuration results in a 4 times
increased measurement speed. This substantially increased measure-
ment efficiency enables new high resolution experiments, particularly
when using laboratory based light sources, such as upcoming laser
based light sources for photoemission employing high harmonic gen-
eration, but also for conventional gas discharge light sources.

As an example, we have measured the spectral function I(k,, k,, E)
of the Au(111) crystal surface in a wide energy range from the Fermi
energy to 7 eV below Er. Fig. 9 shows a section thorough the three-
dimensional spectral function along the M — ' — K directions of the
surface Brillouin zone. The total experimental data set consists of 300
constant energy (k,, k,) momentum disks acquired each for 60 s. This
results in a total measurement time of only 5 h using excitation by He-I
radiation from the gas discharge lamp. It needs to be noted that the
energy resolution of the double pass HDA was set to the best demon-
strated value of AE=13 meV, as it was also used in Fig. 7b. Therefore,
even in this wide energy range overview measurement, small details of
the Au(111) band structure are revealed. For instance, one can observe
the Rashba splitting of the well known Shockley surface state [24], or
straight narrow lines of reduced intensity in the range of Er-3 eV to Ex-
7 eV related to the electron interference in surface barrier scattering
[25,26].
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Fig. 9. Measured spectral function along the M — I' — K direction of the Au
(111) surface. The measurement consists of a total of 300 energy slices mea-
sured at a resolution of AE=13 meV. The total measurement time was 5 h.

6. Conclusions

In summary, we have presented analytical expressions to describe
the imaging properties of hemispherical deflection analyzers for use in
high resolution imaging electron microscopy and momentum micro-
scopy. From the calculations, the energy resolution and non-
isochromaticity of the imaging energy filter can be directly evaluated
and was found to be in excellent agreement with experimental results.
The nonisochromaticity is a general image aberration of imaging en-
ergy filters. It leads to a nonuniform energy distribution over the field of
view, such that an image is not strictly monochromatic. In the case of
the HDA, the nonisochromaticity comes about by the a® sphere aber-
ration in the dispersive plane of the analyzer, and therefore is equally
present for a single HDA, an aberration compensated HDA, as well as
for the double pass HDA. However, this nonisochromaticity is a simple
expression depending only on the square of one in-plane image co-
ordinate, and can be easily corrected numerically. In particular, the
analytical expressions show that higher order aberration terms are
absent for both in-plane image coordinates. This represents an im-
portant advantage of the HDA imaging energy filter for high resolution
electron microscopy applications.

The solutions for the electron trajectories in the analyzer further
show that aberrations that were previously believed to limit the image
resolution [7] cancel out when taking into account the refraction of
electrons at the entrance- and exit-slits of the analyzer. The fringe field
at the entrance and exit of the analyzer is known to introduce a focusing
effect of the electron trajectories that shifts the focal point to deflection
angles < 180, leading to a crossover in front of the slit plane inside the
analyzer [16]. Previous studies have concentrated mainly on reducing
this fringe field effect on the position coordinate p,, in order to increase
the performance of the analyzer, e.g., by using biased analyzers [22] or
paracentric entry geometries [22,23]. In contrast, our results show that
refraction of the electron trajectories due to the fringe field changes the
trajectory angles exactly in such a way that the sphere aberration gets
canceled out for the trajectory angle a. Our experimental results con-
firm that no discernible image aberrations are introduced for trajectory
angles of up to = 3°. In general, the analytical expressions do not
impose a limit on the trajectory angles. Nevertheless for lager angles,
attention should be given to the actual form of the fringe fields, in order
to avoid effects by higher order aberrations that were not captured
analytically.

This previously overlooked effect allows to use a single HDA as an




double pass configuration.
times increased transmission at comparable energy and imag
tion than the aberration compensated analyzer. The double pass con-
figuration is therefore of particular advantage for momentum micro-
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scopy with ultimate energy and wave vector resolution.

Coulomb interactions between electrons, that are not captured in
the analytically derived expressions, are usually not a limiting factor of
the energy analyzer in PEEM or momentum microscopy. The effect of
these space charge interactions has been found previously to be domi-
nated by Coulomb interactions in the regions directly above the sample
surface [27], as well as inside the objective lens of the microscope [28].
Space charge effects are observed at about 10-100 electrons per pulse,
and peak current densities of some 10:—;. These current densities,

however, can easily occur in other applications, for instance, when the
HDA shall be used as monochromator for intense pulsed electron
beams, such that Coulomb effects then need to be considered. This is as
well the case for applying the HDA energy filter to ion beams, where the
critical current density for space charge broadening gets reduced due to
the larger mass of ions compared to electrons [29].

The use of pulsed excitation sources represents an attractive way to
increase the detection efficiency, i.e., the ratio between excited elec-
trons and detected electrons. This is nowadays achieved by the use of a
time-of-flight (ToF) energy detection scheme, for instance in a ToF
momentum microscope [4]. Future combinations of a dispersive band-
pass energy selection by a HDA with the simultaneous ToF detection of
multiple kinetic energies will open a way to combine the mutual ad-
vantages of versatility and efficiency in one instrument. In particular,
the perfect refocusing in space and time of the electron trajectories in
the aberration compensated HDA [11] provides a non-straight low-
energy drift section in which the ToF only depends on the electron
energy.

In general, hemispherical deflection analyzers have become an im-
portant component for high-resolution momentum microscopy, as well
as spectroscopic surface electron microscopy. The detailed under-
standing of their imaging properties will contribute to further improve
the resolution and performance of these experimental techniques and to
address current topics in condensed matter science.
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