000866485 001__ 866485
000866485 005__ 20210130003452.0
000866485 0247_ $$2doi$$a10.1016/j.carbon.2019.06.033
000866485 0247_ $$2ISSN$$a0008-6223
000866485 0247_ $$2ISSN$$a1873-3891
000866485 0247_ $$2WOS$$aWOS:000483384900053
000866485 037__ $$aFZJ-2019-05587
000866485 082__ $$a540
000866485 1001_ $$0P:(DE-Juel1)169309$$aJugovac, Matteo$$b0
000866485 245__ $$aRole of carbon dissolution and recondensation in graphene epitaxial alignment on cobalt
000866485 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000866485 3367_ $$2DRIVER$$aarticle
000866485 3367_ $$2DataCite$$aOutput Types/Journal article
000866485 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573825458_22183
000866485 3367_ $$2BibTeX$$aARTICLE
000866485 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866485 3367_ $$00$$2EndNote$$aJournal Article
000866485 520__ $$aThe crystalline quality of the graphene lattice is a crucial parameter that not only rules the electronic and transport properties of the carbon film, but also its interaction with the substrate. Elucidating the effect of different growth pathways on the resulting graphene-substrate structural configurations and the microscopic mechanisms for their formation is, therefore, a goal of utmost importance. By using electron spectro-microscopy with high chemical and structural sensitivity, we image the structural transformation that graphene on cobalt undergoes at temperatures above 500°C, from a rotationally-incoherent, defective layer to a high quality epitaxial one. We find that the transformation takes place via the growth and propagation of mesoscopic carbidic islands. We identify the underlying mechanism for the formation of epitaxial graphene to involve the dissolution and recondensation of carbon within these regions. The activation energy of the process is estimated to be 1.84 ± 0.11 eV, indicating that the carbon detachment is the rate-limiting step. With the aid of theoretical calculations, we show that the martensitic phase transition occurring in cobalt above 420°C does not affect the graphene transformation. These findings help to establish the optimal parameters to grow high-quality graphene epilayers on Co, opening viable routes towards usage in artificially fabricated magnetic heterostructures.
000866485 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000866485 588__ $$aDataset connected to CrossRef
000866485 7001_ $$0P:(DE-HGF)0$$aGenuzio, Francesca$$b1
000866485 7001_ $$0P:(DE-HGF)0$$aGonzalez Lazo, Eduardo$$b2
000866485 7001_ $$0P:(DE-HGF)0$$aStojić, Nataša$$b3
000866485 7001_ $$0P:(DE-Juel1)162281$$aZamborlini, Giovanni$$b4
000866485 7001_ $$0P:(DE-Juel1)145012$$aFeyer, Vitaliy$$b5
000866485 7001_ $$00000-0003-0413-9272$$aMenteş, Tevfik Onur$$b6$$eCorresponding author
000866485 7001_ $$00000-0002-8072-7343$$aLocatelli, Andrea$$b7
000866485 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus Michael$$b8
000866485 773__ $$0PERI:(DE-600)2014715-6$$a10.1016/j.carbon.2019.06.033$$gVol. 152, p. 489 - 496$$p489 - 496$$tCarbon$$v152$$x0008-6223$$y2019
000866485 909CO $$ooai:juser.fz-juelich.de:866485$$pVDB
000866485 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169309$$aForschungszentrum Jülich$$b0$$kFZJ
000866485 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162281$$aForschungszentrum Jülich$$b4$$kFZJ
000866485 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145012$$aForschungszentrum Jülich$$b5$$kFZJ
000866485 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b8$$kFZJ
000866485 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000866485 9141_ $$y2019
000866485 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCARBON : 2017
000866485 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866485 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866485 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866485 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866485 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866485 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866485 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866485 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866485 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866485 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCARBON : 2017
000866485 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000866485 980__ $$ajournal
000866485 980__ $$aVDB
000866485 980__ $$aI:(DE-Juel1)PGI-6-20110106
000866485 980__ $$aUNRESTRICTED