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Motivated by recent studies on current-driven domain-wall motion we have explored the dispersion of spin

waves (magnons) in ultrathin nickel/cobalt multilayers. The layers are grown epitaxially on Cu(100) surfaces

and consist of n nickel single-atom layers, each topped by a cobalt bilayer with n = 2, 3, and 4 (n × Ni1Co2).

Layers of the type 2 × Ni2Co1 are also studied. While parallel to the film plane the magnon dispersion is nearly

equal to that of pure cobalt films, magnons with wave vectors perpendicular to the film plane (standing waves)

are considerably softened. The softening is attributed to a reduction of the effective interlayer exchange coupling

between the two layers next to the interface with the Cu(100) substrate.
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I. INTRODUCTION

Multilayers consisting of a sequence of ultrathin nickel

and cobalt layers are known to exhibit strong perpendicular

magnetic anisotropy and were therefore considered among

other candidates as media for perpendicular recording [1–3].

The interest in these materials was renewed in the context

of electronic devices based on current-induced domain-wall

motion [4–6] such as racetrack memories [7] and domain-

wall logics [8]. The motivation came from theoretical studies

which indicated a significantly lower current density required

for domain-wall motion in materials with perpendicular mag-

netic anisotropy [9–11].

For an atomistic understanding of spin-orientation

phenomena in thin Ni/Co films a precise control of the

composition and morphology on an atomic level is needed,

which may be achieved through epitaxial layer-by-layer

growth. The technique enables both the specification of the

thickness of the individual Ni- and Co layers in terms of

atom layers and the interface quality, which is contrary to

most application-motivated studies on domain-wall motion in

Ni/Co nanowires [11].

Two types of well-ordered Ni/Co films can be prepared

by epitaxial growth: Hexagonal layers with (0001) planes are

obtained on W(110) surfaces [12,13]. Ordered layers of nickel

and cobalt as well as Ni/Co multilayers exposing a (100)

surface plane grow on Cu(100) surfaces. The film structure is

akin to fcc, however with a small tetragonal distortion along

the vertical axis which depends on the distance to the interface

to copper [14,15].

Using spin-polarized low-energy microscopy, Suzuki et al.

have studied the magnetic domains of hexagonal close-packed

multilayers of nickel and cobalt [12] to find perpendicularly

polarized domains for n × [Ni2Co1] layers if n > 3. Spin

orientation, the domain sizes, and shapes of domain walls
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were found to depend critically on the sequence and number

of atom layers in the nickel/cobalt films. The pattern of spin

orientation and domain shapes is more complex than in layers

which consist solely of either cobalt or nickel. In general, the

easy axis of magnetization in thin film rests on magnetocrys-

talline, interface, and surface, as well as on shape anisotropies.

The thickness and roughness of domain walls is controlled by

the balance of anisotropy and exchange energies. In order to

see if a possibly modified exchange coupling across the Ni/Co

interfaces contributes to the complex domain pattern it would

be useful to have an atomic view exclusively on the exchange

energies. That view is conveniently provided by studies of the

dispersion of high-momentum magnons [16–20]. Magnons of

higher momentum are controlled by the energy required to

rotate an atomic spin with respect to the neighboring atoms.

This energy is two to three orders of magnitude larger than

the energy per atom required to rotate the spin orientation of

a domain with respect to a given crystal direction.

In a previous study we have shown that magnons in ultra-

thin nickel and cobalt films have nearly the same dispersion

when the wave vector is oriented within the film plane.

However, perpendicular to the film plane magnons in nickel

are softer and more strongly damped compared to cobalt [17].

This paper now focuses on the role of Ni/Co interfaces on

the spin dynamics in Ni/Co films grown on Cu(100). The

films consist of sequences of Ni single-atom layers (Ni1)

followed by two-atom layers of cobalt (Co2); hence films of

the type n × (Ni1Co2) with n = 2, 3, and 4. Furthermore, a

film containing twice as much Ni as Co, namely a 2 × Ni2Co1

film is studied for comparison.

We find that magnons in n × (Ni1Co2) films with wave

vectors parallel to the film plane (acoustic modes) have about

the same stiffness as pure cobalt films. Magnons with a wave-

vector component perpendicular to the film plane (stand-

ing modes) are significantly softer compared to pure cobalt

films. The entire set of dispersion curves is quantitatively

fitted by a nearest-neighbor Heisenberg model involving only

two exchange-energy parameters: one for the weak exchange
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coupling between the Ni layer adjacent to copper and the

next (cobalt) layer above, a second one for all other nearest-

neighbor couplings. In particular we find that the interlayer

coupling between Ni and Co layers inside the film is as in

pure cobalt films. Hence, no significant modification of the

exchange coupling arises from the Ni/Co interfaces inside the

n × (Ni1Co2) films. The softening of the magnons perpendic-

ular to the n × (Ni1Co2) films compared to pure cobalt films is

therefore caused by the strong interaction of the last Ni layer

with the Cu(100) substrate.

II. EXPERIMENT

Magnon dispersion in the high-momentum range is mea-

sured using inelastic scattering of electrons off the sur-

face of magnetic films. The technique enables the investi-

gation of magnons in the wave-vector range between 1 and

10 nm−1 with an energy resolution of about 2.5 meV presently

[18,21,22]. The electron-energy-loss spectrometer used here

is of the type described in Refs. [23,24]. Unpolarized electrons

are used and no polarization analysis is involved. This has

the advantage that the electron-magnon interaction does not

depend on the orientation of the spin polarization in the film.

Domains with different spin orientation contribute equally

to the spectrum. According to Suzuki et al. the average

domain size is on the order of 50 nm whereas the experiment

averages over an area of several mm2. Hence each spectrum

represents an ensemble of differently oriented domains. By

using unpolarized electrons the experiment as such does not

discriminate vibrations and magnons. It is therefore essential

that the sample be free of contaminants like oxygen and

carbon.

In all experiments discussed here the electron-impact-

energy E0 is chosen as 2.25 eV. The wave vector parallel to

the surface q|| is set by the wave-vector conservation which

for an energy loss is

q|| = k(f) sin(θ (f)) − k(i) sin(θ (i)). (1)

Here, k(i) and k(f) are the moduli of k vectors of incident

and scattered electrons, respectively, and θ (i) and θ (f) are the

angles with respect to the normal of the surface. The desired

wave vector of the magnon parallel to the surface is chosen

by rotation of the sample around the axis vertical to the

scattering plane. Spectra are recorded at fixed rotation angle.

Since the electron-impact energy is relatively low the true

wave vector varies slightly with the magnitude of the energy

loss. For example, for E0 = 2.25 eV, a nominal wave vector of

q||,nom = 2 nm−1 and an energy loss of 15 meV, the true wave

vector is q|| = 1.97 nm−1.

Film preparation is performed via electron beam assisted

evaporation from cobalt and nickel rods. The thicknesses are

calibrated vs the ion current of the evaporator, which in turn

is calibrated by oscillations in the intensity of reflected 3-

keV electrons at grazing incidence (“medium energy electron

diffraction (MEED) oscillations”) [19,25,26].

Because of our atomic-scale calibration the thickness of

films is specified by the number of single-atom layers through-

out the paper. The thickness of nickel and cobalt single-atom

layers in thin, pseudomorphic films on Cu(100) are 0.17 and

0.175 nm, respectively [14,27]. The thicknesses vary slightly

FIG. 1. LEED pattern of (a) 2 × (Ni1Co2) film (total of 6 layers)

and (b) 4×(Ni1Co2) film (total of 12 layers). LEED patterns were

taken at slightly different energies (175 and 163 eV for (a) and (b),

respectively).

with the position of the layer in the film. The distance between

the surface layer and the next layer below, e.g., is contracted

by a few percent [14,27].

After deposition, the films are annealed to temperatures up

to 450 K for 15 min. At this temperature the surface diffu-

sion of cobalt atoms across steps is large enough to initiate

smoothening of the surface and thereby a reduction of the

density of surface steps. As shown in Ref. [18] this procedure

produces flatter surfaces while still no copper creeps to the

surface [28].

The lateral order of the films is probed by low-energy

electron diffraction (LEED). As examples, Fig. 1 shows the

LEED pattern of two films: (a) a 6-layer film of the type

2 × (Ni1Co2) and (b) a 12-layer film of the type 4×(Ni1Co2).

The diffraction patterns demonstrate that both films are well

ordered.

III. RESULTS

Characteristic energy-loss spectra for 2 × (Ni1Co2) and

2 × (Ni2Co1) are displayed in Fig. 2. The impact energy is

2.25 eV; the nominal wave vector is q|| = 1.8 nm−1 oriented

along the [011] (Ŵ̄ X̄) direction. The intensity of energy loss

and gain features in energy-loss spectroscopy are proportional

to n̄ + 1 and n̄, respectively, with n̄ = 1/[exp(h̄ω/kBT ) − 1]

the Bose occupation number [29]. Here, h̄ω is the quantum

energy of the loss, T the temperature (300 K), and kB the

Boltzmann constant. By dividing the measured spectra by

(n̄ + 1) the loss spectra as shown here represent the genuine

spectral densities [19].

Both six-layer films, 2 × (Ni1Co2) and 2 × (Ni2Co1),

show two modes. The lower-energy mode is the acoustic

mode. The higher-energy mode is the first standing wave [20].

The intensity for the 2 × (Ni2Co1) film (blue open squares) is

much weaker than the intensity for 2 × (Ni1Co2) (blue solid

circles). The reason is that electrons interact with magnons

practically only via the cobalt atoms. No magnon signals are

found in electron scattering from pure nickel films although

magnons of nearly the same stiffness as in cobalt exist in these

films [17]. To the best of our knowledge the reason for the

small cross section with Ni magnons is not fully understood.
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FIG. 2. Magnon spectra for two types of six-atom-layer films:

2 × (Ni1Co2) and 2 × (Ni2Co1) (solid circles and open squares, re-

spectively). Both spectra are taken with 10 s/channel. The spectrum

for 2 × (Ni1Co2) is shifted upwards for clarity. The dashed lines

denote the decomposition of the spectra into constant background,

elastic tail, and Lorentzians.

One might argue that the cross section should scale with

the square of the magnetic moment, from which one would

estimate that the electron/magnon interaction in nickel should

be about eight times less that in cobalt. However, in reality

the electron/magnon cross section in nickel must be even

smaller [30].

The solid blue lines in Fig. 2 are fits by a Gaussian for

the tail of the elastic peak and two Lorentzians riding on a

small constant background. The dashed lines mark the decom-

position into the individual peaks. The open red triangles on

the left side show the elastic diffuse lines with a full width

at half maximum of 2.65 meV. We note that this marks a

high resolution achieved in energy-loss spectra of magnons.

High-energy resolution is essential: The same spectrum taken

with energy resolution of 20 meV would produce a single

peak centered at 19 meV instead of two peaks at 12.5 and

28.6 meV. Taking positions of low-resolution magnon spectra

vs wave vector would therefore produce bogus dispersion

curves in case of several atom layers thick films (compare,

e.g., Refs. [31–33]). We remark furthermore that the magnon

signals in Fig. 2 are of comparable width as for pure cobalt

layers (see Fig. 1 of Ref. [18]).

Neglecting small anisotropy effects and Dzyaloshinskii-

Moriya interactions [34,35] the acoustic mode disperses

quadratically for small wave vectors q|| and therefore

approaches zero at q|| = 0,

h̄ω = Dq2
||. (2)

The parameter D is known as the stiffness. Characteristic

for the acoustic mode is the nearly homogeneous precession

amplitude across the film. The stiffness of the mode is there-

fore largely determined by the intralayer exchange coupling.

The first standing mode has a node in the precession am-

plitude situated near the center of the film [26]. Perpendicular

to the film plane the amplitude of the mode is approximated

FIG. 3. Magnon dispersion of 2 × Ni2Co1, 2 × Ni1Co2 and Co6

films. The energies of the standing modes of 2 × Ni2Co1 films

(solid green squares) and 2 × Ni1Co2 films (solid blue triangles)

are lower than the standing mode of the Co6 film (solid magenta

diamonds). The stiffness of the acoustic mode of 2 × Ni1Co2 and

Co6 is identically within the limits of error (open blue triangles and

open magenta diamonds, respectively). The stiffness for 2 × Ni2Co1

appears to be a little lower (open green squares). The lines are the

dispersion curves calculated in a nearest-neighbor model (see text

for discussion).

by a cosine function with a wave vector

q⊥ =
π

Na⊥

. (3)

Here N is the number of layers and a⊥ the interlayer

distance. The nonzero perpendicular wave vector causes a

nonzero energy at q|| = 0. The energy at q|| = 0 approxi-

mately scales proportional to N −2 and is there entirely de-

termined by the interlayer exchange coupling.

Dispersion data for the 2 × (Ni2Co1) film are displayed

in Fig. 3 (open and solid green squares) together with the

data for the 2 × (Ni1Co2) film and a six-layer film of pure

cobalt. Data points for the acoustic mode of the 2 × (Ni2Co1)

film (open green squares) appear to fall slightly below the

data for 2 × (Ni1Co2) and Co6. The acoustic modes of the

2 × (Ni1Co2) film (open blue triangles) and the Co6 film

(open magenta diamonds) have the same stiffness within the

limits of error.

Fitting the data for the acoustic mode of the 2 × (Ni1Co2)

and the Co6 film to the quadratic dependence [Eq. (2)] we

obtain the stiffness as

D = 3.9 meV nm2. (4)

This value is in good agreement with the stiffness of

magnons in bulk fcc cobalt (D = 3.84 meV nm2 [36]) and

nickel (3.74 meV nm−1 [36–38]). Hence, there is no specific

thin-film effect or any noticeable effect of the Ni/Co interfaces

on the stiffness of the acoustic mode. This result is consistent

with our earlier study on nickel films (equipped with cobalt

topping to increase coupling with scattered electrons) [17].
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FIG. 4. Magnon spectra for three different films deposited on

Cu(100) corrected for the Bose-occupation number: 2 × (Ni1Co2),

3×(Ni1Co2), and 4×(Ni1Co2). Resolution and accumulation time

was 4.5 meV and 2 s/channel, respectively. The colored insets show

the ideal layer structure.

All three six-layer films, Co6, 2 × (Ni1Co2), and 2 ×

(Ni2Co1), have about the same thickness. According to Eq. (3)

one would expect the same dispersion of the standing modes if

the interlayer exchange-coupling constants of the three films

were equal. However, the energies of the standing modes are

quite different: data for the 2 × (Ni1Co2) film (solid blue

triangles) fall significantly below the data for the Co6 film

(solid magenta diamonds). Even lower are the energies of

the standing mode in the 2 × (Ni2Co1) film (solid green

squares). With reference to Eq. (3) we therefore conclude

that the exchange coupling at least across one interlayer must

be strongly affected by the partial replacement of cobalt

with nickel. In order to find out which interlayer exchange

coupling is affected mostly we compare the standing modes

of n × (Ni1Co2) with n = 2, 3, and 4. These films have in

common the nickel/copper interface, but differ in the number

of nickel/cobalt interfaces.

Figures 4(a), 4(b), and 4(c) show sample spectra for 2 ×

(Ni1Co2), 3×(Ni1Co2), and 4×(Ni1Co2), respectively. The

dispersion data for n × (Ni1Co2) films with n = 2, 3, and 4

are compared in Fig. 5. The stiffness of the acoustic modes

of the 3×(Ni1Co2) film and the 4×(Ni1Co2) film (open green

FIG. 5. Magnon dispersion of n × Ni1Co2 films for n = 2, 3,

and 4 are denoted by blue triangles, green circles, and red squares,

respectively. Open and solid symbols stand for the acoustic and first

standing mode, respectively. The lines map the dispersion curves

calculated in a nearest-neighbor model (see text for discussion).

circles and open red squares) are equal within the limits of

error. The stiffness of the acoustic mode of the 2 × (Ni1Co2)

film (open blue triangles, same data as in Fig. 3) appears to be

slightly lower. The dispersion data of the standing modes in

Fig. 5 are marked by solid blue triangles, solid green circles,

and solid red squares for the 2 × (Ni1Co2), 3×(Ni1Co2), and

4×(Ni1Co2) film, respectively. The energies are the lower the

larger the number of layers is (Eq. (3), see also Ref. [20]). As a

consequence, the energies of the acoustic and standing modes

merge together with increasing film thickness. Furthermore

the modes become the broader the larger their energy is. A

separation of the standing mode and the acoustic mode is

therefore possible only for small wave vectors q|| and small

thicknesses.

For the n × (Ni2Co1)-type films featuring a smaller inter-

action between magnons and scattered electrons (Fig. 2) a

separation of acoustic and standing modes is achieved only

for the 2 × (Ni2Co1) film (Figs. 2 and 3).

IV. ANALYSIS OF DISPERSION DATA

In itinerant magnets (Fe, Co, Ni) magnons interact with

spin-flip single-electron excitations (Stoner excitations). The

interaction leads to Landau damping of magnons as well as to

renormalization of magnon energies. In thin films deposited

on nonferromagnetic substrates the interaction with Stoner ex-

citations is even stronger as the substrate provides a reservoir

of low-energy spin-flip excitations [39–43]. The phase space

of Stoner excitations available for interaction with magnons

shrinks with decreasing magnon energies and wave vectors.

Landau damping therefore decreases rapidly for smaller wave

vectors q and levels off to a very small value as q approaches

zero [44].

The inclusion of the spectrum of Stoner excitation in a

“dynamic theory” of magnons is a challenging task which
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has been performed for only a small number of systems

and mostly for single-atom layers grown on nonmagnetic

substrates [39,43–45]. Remarkably, even the most advanced

studies calculate far too high values of the magnon stiffness

in case of cobalt layers. The deviation between theory and

experiment has been attributed to the fact that theory usually

refers to zero temperature [43,46,47] while experiments were

mostly performed at higher temperatures. This opinion is

however at variance with the experimental fact that no signif-

icant temperature dependence of cobalt magnon energies was

found between 90 and 300 K [30].

Whereas a theory for magnons in the Ni/Co system is not

available, it is useful to analyze the dispersion data within the

Heisenberg model. The model (quite incorrectly) assumes that

spins localized on neighboring atoms follow the precession of

their neighbors adiabatically. Hence, the model neglects the

damping of magnons by Stoner excitations and produces δ

function like spectral densities. However, the model suffices

to describe the dispersion curves as long as the wave vector of

the magnon is small.

We consider merely nearest-neighbor interactions as these

prevail by about a factor of five to ten in fcc metals [46–48].

We assume the intralayer exchange coupling of cobalt and

nickel to be equal. This is a meaningful approach in view

of the fact that Co6, 2 × (Ni1Co2), and 2 × (Ni2Co1) films

have nearly the same stiffness (Fig. 4). Likewise, the stiffness

of bulk magnons in fcc cobalt and nickel are close (3.84 vs

3.74 meV nm−1 [36–38]). For the moment we assume further-

more that also the interlayer exchange-coupling constants are

equal. In that case the stiffness of acoustic magnons along the

Ŵχ [1 10] direction in an fcc film with (100) surfaces is de-

scribed by D = 4Ja2 [17,49]. Here, J and a are the exchange

interaction and the lateral lattice constant, respectively. The

dispersion of the acoustic modes is thus described by

h̄ω = 4Ja2q2
||. (5)

When applying that model to the n × (Ni1Co2) films one

calculates an exchange interaction of J = 15 meV from the

experimental stiffness [Eq. (4)].

By using the same model now for the standing modes

in n × (Ni1Co2) films one finds that the calculated disper-

sion approximately matches the experimental data for the

4×(Ni1Co2) films without further ado, however overestimates

grossly the standing mode energy of 2 × (Ni1Co2) (Fig. 6).

Qualitatively the same discrepancy is found for pure cobalt

films (not shown).

The alternative, namely fitting the standing mode of the

thinner 2 × (Ni1Co2) film with uniform interlayer coupling

constants, would require a substantial reduction of the inter-

layer exchange coupling. Then, however, the dispersion curve

for the standing mode in 4×(Ni1Co2) would fall well below

the experimental data. A consistent modeling of the magnon

dispersion of all n × (Ni1Co2) films is therefore not possible

with uniform interlayer exchange-coupling constants.

However, a simple modification of the exchange interac-

tion field leads to a quantitative description of the disper-

sion curves of cobalt as well as n × (Ni1Co2) films. This

modification consists of a reduction of the interlayer interac-

tion between the N th layer at the copper interface and the

FIG. 6. Dispersion data of 2 × Ni1Co2 and 4 × Ni1Co2 films are

marked by blue triangles and red squares, respectively. Data are

the same as in Fig. 5. The dash-dotted line fits the acoustic mode

with a stiffness of 3.9 meV nm2. The dashed lines are calculated

in the nearest-neighbor Heisenberg model assuming homogeneous

exchange coupling J = 15 meV.

penultimate layer above (Table I). The dashed- and dash-

dotted dispersion curves in Figs. 4 and 5 are calculated with

this set of exchange constants. The curves match the experi-

mental data perfectly. For the n × (Ni1Co2) as well as for the

Co6 film it is assumed that the intralayer coupling in the layer

adjacent to the copper interface, JN , is as in the interior of the

film (Table I). However, a moderate reduction of JN would

be also consistent with the experimental data and technically

would lead to a slightly better fit of the acoustic mode of the

2 × (Ni1Co2) film (Fig. 5).

The 2 × (Ni2Co1) films feature two Ni layers on top of

each other directly at the interface. In that case the stiffness

of the acoustic mode is a little smaller than for 2 × (Ni1Co2).

In addition the standing mode energy is smaller. Matching

the experimental data for 2 × (Ni2Co1) films in Fig. 3 (green

dashed line) requires an additional reduction of JN,N−1, and

JN , as well as a mild reduction of J.

TABLE I. Exchange-coupling constants used for the calculation

of the dispersion curves in Figs. 4 and 5. Interlayer and intralayer

coupling are assumed to be identical except for the interaction

between the N th layer at the interface to Cu(100) and the cobalt layer

above denoted as N − 1.

J (meV) JN (meV) JN.N−1 (meV)

Co6 19.5 19.5 3.3

(2;3;4)×(Ni1Co2) 19.5 19.5 2.5

2 × (Ni2Co1) 18 14 1.8
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V. DISCUSSION

The field of exchange interactions considered above devi-

ates qualitatively from the exchange interaction field calcu-

lated for cobalt films by Costa et al. [48] and Bergqvist et al.

[46] in the adiabatic model. Neither one features a drastically

reduced interlayer exchange constant at the interface. How-

ever it is also the case that both exchange interaction fields

deviate from each one and neither one as such describes the

experimental data of cobalt films [20]. The exchange interac-

tion field of Bergqvist et al. only works when globally reduced

by about 20% [20]. The discrepancy between theory and

experiment is not restricted to fcc films of cobalt. dos Santos

et al. recently calculated dispersion curves of hexagonal cobalt

films on W(110) surfaces using density-functional theory. The

theory overvalues the exchange coupling on the average by

about 30% (see, e.g., Fig. 10 of Ref. [50]).

Evidence for a significant role of the interface with the

substrate on the magnons in 3d films is provided by a study of

Buczek et al. concerning iron, cobalt, and nickel single-atom

layers on Cu(100). The authors show that the presence of the

substrate causes a reduction of the exchange splitting in the

ferromagnetic layer adjacent to copper, a smaller magnetic

moment, and a larger energy width of the Stoner continuum

[43]. The effect is particular strong for single-atom layers of

nickel and gives rise to strong damping and lower magnon

energies in the single-layer Ni film. Multilayers were not

studied though. The results of Buczek et al. nevertheless

suggest that the coupling to the substrate has a significant

effect on the magnon dispersion. A reduction of the interlayer

exchange coupling for layers next to the copper interface as

suggested by our analysis of the data is therefore a possible

scenario.

VI. CONCLUSION

It is well known from inelastic neutron scattering that

bulk nickel and cobalt have comparable strength of the ex-

change coupling despite the large differences in magnetic

moments and Curie temperatures. This study shows that also

the exchange coupling between nickel and cobalt across a

nickel/cobalt interface is of the same magnitude. The dif-

ferences in the magnon spectra of Co6, n × (Ni1Co2), and

2 × (Ni2Co1) films are attributed to the interface with the

Cu(100) substrate. In particular, the interlayer coupling be-

tween the layer directly at the interface and the penultimate

layer is strongly affected by the presence of the interface.

The interface effect is found to be stronger for nickel than for

cobalt, which is consistent with theory [43].

We remark that the experimental data are not at variance

with a reduced intralayer coupling in the layer adjacent to

the interface. We did not invoke a reduction of the intralayer

coupling at the interface since fitting an additional parameter

would lack uniqueness.

We finally conclude that the dramatic changes in the do-

main patterns of Ni/Co films as function of thickness found

by Suzuki et al. [12] are to be attributed to anisotropies

induced by the Ni/Co interfaces and not to interface-induced

modifications of the exchange coupling.
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APPENDIX

The appendix describes magnons in the nearest-neighbor

Heisenberg model for the (100) slab of an fcc crystal with

layer-dependent exchange couplings.

1. General formulation

For the purpose of calculating the dispersion of spin waves,

the Heisenberg Hamiltonian may be transformed into the

classical equation [49]

ih̄Ṡi = 2S
∑

j

Ji j (Si − S j ). (A1)

The index j in the sum runs over all neighbors (here nearest

neighbors). The formulation allows for different exchange

constants between atoms. This is of interest for layers com-

posed of different atoms. It is useful to replace the indices by

number triples

i → l||, lz, j → l′||, l ′
z. (A2)

Here, l|| is a two-dimensional (2D) number denoting the

unit cell and lz denotes the layer number. Equation (1) then

becomes

ih̄Ṡl||,lz = 2S
∑

l′ || ,l
′z

J (l|| − l′||;lz − l ′
z )(Sl||,lz − Sl′ ||,l ′z ). (A3)

For the 2D-periodic slab we introduce the Fourier

transform

Sl||,lz = A(q||, lz )ei[q||•r(l||,lz )]. (A4)

The amplitude A depends on the wave vector parallel to the

surface of the slab q|| and the layer lz. Assuming a periodic

time dependence Eq. (A3) becomes

h̄ωA(q||, lz ) = 2S
∑

l′ ||,l ′z

J (lzl
′
z )

×{A(q||, lz ) − A(q||, l ′
z )eiq||•[r(l||,lz )−r(l′ ||,l

′
z )]},

(A5)

This is the starting equation for calculating the spin waves

in a particular direction.

2. Spin waves in an fcc (100) slab along the [011̄] direction

We now consider spin waves along the [011̄] direction (Ŵ̄ X̄

direction) of the (100) surface of an fcc slab. We write the q

vector as

q|| = qxex. (A6)
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After introducing a shorthand notation for the amplitudes

A(q||, lz ) one obtains for the first layer the equation

h̄ωA1 = 8JS

{

1
2
C1A1 − 1

4
C1A1(eiqa + e−iqa)

+C12A1 − 1
2
C12A2(eiqa/2 + e−iqa/2)

}

. (A7)

Here we have introduced exchange constants in the first

layer as J1 = C1J and between the first- and second-layer

atoms as J12 = C12J.

For the second layer one has

h̄ωA2 = 8JS











1
2
C2A2 − 1

4
C2A2(eiqa + e−iqa)

+C12A2 − 1
2
C12A1(eiqa/2 + e−iqa/2)

+C23A2 − 1
2
C23A3(eiqa/2 + e−iqa/2)











. (A8)

For the third and deeper layers Eq. (8) applies with corre-

sponding Ci, j . For the N th layer of an N-layer slab one has the

equivalent equation to (A7):

h̄ωAN = 8JS











1
2
CN AN − 1

4
CN AN (eiqa + e−iqa )

+CN−1,N AN

− 1
2
CN−1,N AN−1(eiqa/2 + e−iqa/2)











. (A9)

We introduce a reduced energy Ẽ as

Ẽ = h̄ω/8JS. (A10)

The eigenvalue equation is then







α1 − E β1 0 0

β1 α2 − E β2 0

0 βN−1 αN − E











A1

A2

AN



 = 0,

(A11)

with

α1 = 0.5C1(1 − cos q||a) + C12,

β1 = −C12 cos q||a/2

α2 = 0.5C2(1 − cos q||a) + C23 + C12,

β2 = −C23 cos q||a/2 (A12)

αn �=N = 0.5Cn,n(1 − cos q||a) + Cn,n+1 + Cn,n−1,

βn = −Cn,n+1 cos q||a/2

αN = 0.5CN (1 − cos q||a) + CN−1,N .
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