000866512 001__ 866512
000866512 005__ 20230217124405.0
000866512 0247_ $$2doi$$a10.1103/PhysRevE.100.043202
000866512 0247_ $$2ISSN$$a1063-651X
000866512 0247_ $$2ISSN$$a1095-3787
000866512 0247_ $$2ISSN$$a1538-4519
000866512 0247_ $$2ISSN$$a1539-3755
000866512 0247_ $$2ISSN$$a1550-2376
000866512 0247_ $$2ISSN$$a2470-0045
000866512 0247_ $$2ISSN$$a2470-0053
000866512 0247_ $$2Handle$$a2128/23453
000866512 0247_ $$2pmid$$apmid:31770946
000866512 0247_ $$2WOS$$aWOS:000489828800008
000866512 037__ $$aFZJ-2019-05602
000866512 082__ $$a530
000866512 1001_ $$00000-0002-9247-9789$$aWu, Yitong$$b0$$eCorresponding author
000866512 245__ $$aPolarized electron acceleration in beam-driven plasma wakefield based on density down-ramp injection
000866512 260__ $$aWoodbury, NY$$bInst.$$c2019
000866512 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2019-10-11
000866512 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2019-10-01
000866512 3367_ $$2DRIVER$$aarticle
000866512 3367_ $$2DataCite$$aOutput Types/Journal article
000866512 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1574427090_15690
000866512 3367_ $$2BibTeX$$aARTICLE
000866512 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866512 3367_ $$00$$2EndNote$$aJournal Article
000866512 520__ $$aWe investigate the precession of electron spins during beam-driven plasma-wakefield acceleration based on density down-ramp injection by means of full three-dimensional (3D) particle-in-cell (PIC) simulations. A relativistic electron beam generated via, e.g., laser wakefield acceleration, serves as the driving source. It traverses the prepolarized gas target and accelerates polarized electrons via the excited wakefield. We derive the criteria for the driving beam parameters and the limitation on the injected beam flux to preserve a high degree of polarization for the accelerated electrons, which are confirmed by our 3D PIC simulations and single-particle modeling. The electron-beam driver is free of the prepulse issue associated with a laser driver, thus eliminating possible depolarization of the prepolarized gas due to ionization by the prepulse. These results provide guidance for future experiments towards generating a source of polarized electrons based on wakefield acceleration.
000866512 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000866512 542__ $$2Crossref$$i2019-10-11$$uhttps://link.aps.org/licenses/aps-default-license
000866512 588__ $$aDataset connected to CrossRef
000866512 7001_ $$0P:(DE-HGF)0$$aJi, Liangliang$$b1
000866512 7001_ $$0P:(DE-HGF)0$$aGeng, Xuesong$$b2
000866512 7001_ $$0P:(DE-Juel1)165750$$aYu, Qin$$b3
000866512 7001_ $$0P:(DE-HGF)0$$aWang, Nengwen$$b4
000866512 7001_ $$0P:(DE-HGF)0$$aFeng, Bo$$b5
000866512 7001_ $$0P:(DE-HGF)0$$aGuo, Zhao$$b6
000866512 7001_ $$0P:(DE-HGF)0$$aWang, Weiqing$$b7
000866512 7001_ $$0P:(DE-HGF)0$$aQin, Chengyu$$b8
000866512 7001_ $$0P:(DE-HGF)0$$aYan, Xue$$b9
000866512 7001_ $$0P:(DE-HGF)0$$aZhang, Lingang$$b10
000866512 7001_ $$0P:(DE-HGF)0$$aThomas, Johannes$$b11
000866512 7001_ $$0P:(DE-Juel1)167417$$aHützen, Anna$$b12
000866512 7001_ $$0P:(DE-HGF)0$$aPukhov, Alexander$$b13
000866512 7001_ $$0P:(DE-Juel1)131108$$aBüscher, Markus$$b14
000866512 7001_ $$0P:(DE-HGF)0$$aShen, Baifei$$b15
000866512 7001_ $$0P:(DE-HGF)0$$aLi, Ruxin$$b16
000866512 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.100.043202$$bAmerican Physical Society (APS)$$d2019-10-11$$n4$$p043202$$tPhysical Review E$$v100$$x2470-0045$$y2019
000866512 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.100.043202$$gVol. 100, no. 4, p. 043202$$n4$$p043202$$tPhysical review / E$$v100$$x2470-0045$$y2019
000866512 8564_ $$uhttps://juser.fz-juelich.de/record/866512/files/PhysRevE.100.043202.pdf$$yOpenAccess
000866512 8564_ $$uhttps://juser.fz-juelich.de/record/866512/files/PhysRevE.100.043202.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866512 909CO $$ooai:juser.fz-juelich.de:866512$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866512 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167417$$aForschungszentrum Jülich$$b12$$kFZJ
000866512 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131108$$aForschungszentrum Jülich$$b14$$kFZJ
000866512 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000866512 9141_ $$y2019
000866512 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866512 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866512 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000866512 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866512 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866512 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866512 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866512 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866512 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866512 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866512 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV E : 2017
000866512 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866512 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866512 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000866512 980__ $$ajournal
000866512 980__ $$aVDB
000866512 980__ $$aUNRESTRICTED
000866512 980__ $$aI:(DE-Juel1)PGI-6-20110106
000866512 9801_ $$aFullTexts
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.54.693
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.55.1537
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1455003
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1109/27.509991
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.43.267
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.81.1229
000866512 999C5 $$1A. W. Chao$$2Crossref$$9-- missing cx lookup --$$a10.1142/8543$$y2013
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.122.084801
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.113.245002
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41586-018-0485-4
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature02900
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature05538
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/68/9/R01
000866512 999C5 $$1T. J. Gay$$2Crossref$$oT. J. Gay Advances in Atomic, Molecular, and Optical Physics 2009$$tAdvances in Atomic, Molecular, and Optical Physics$$y2009
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/34/3/305
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00820300
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/ab2fd7
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.118.233401
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2989803
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/hpl.2018.73
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1084809
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/cphc.200400108
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.121.083001
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevSTAB.14.071303
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.122.214801
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41567-019-0610-9
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.40.3061
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1248
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms11785
000866512 999C5 $$1W. B. Mori$$2Crossref$$oW. B. Mori 2011$$y2011
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature13882
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.58.R5257
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.86.1011
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.69.046405
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys2071
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevSTAB.13.091301
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.185006
000866512 999C5 $$1B. Hidding$$2Crossref$$oB. Hidding Advanced Accelerator Concepts: 15th Advanced Accelerator Concepts Workshop 2012$$tAdvanced Accelerator Concepts: 15th Advanced Accelerator Concepts Workshop$$y2012
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0741-3335/56/8/084011
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.035001
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1566027
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.95.042102
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/S0022377899007515
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.2.435
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4996856
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3566062
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.135004
000866512 999C5 $$1K. Swanson$$2Crossref$$oK. Swanson Advanced Accelerator Cconcepts: 17th Advanced Accelerator Concepts Workshop 2017$$tAdvanced Accelerator Cconcepts: 17th Advanced Accelerator Concepts Workshop$$y2017
000866512 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4948712