000866513 001__ 866513
000866513 005__ 20210130003500.0
000866513 0247_ $$2doi$$a10.1088/1367-2630/ab2fd7
000866513 0247_ $$2Handle$$a2128/23454
000866513 0247_ $$2altmetric$$aaltmetric:58789064
000866513 0247_ $$2WOS$$aWOS:000477660100002
000866513 037__ $$aFZJ-2019-05603
000866513 082__ $$a530
000866513 1001_ $$00000-0002-9247-9789$$aWu, Yitong$$b0
000866513 245__ $$aPolarized electron-beam acceleration driven by vortex laser pulses
000866513 260__ $$a[London]$$bIOP73379$$c2019
000866513 3367_ $$2DRIVER$$aarticle
000866513 3367_ $$2DataCite$$aOutput Types/Journal article
000866513 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1574427597_15690
000866513 3367_ $$2BibTeX$$aARTICLE
000866513 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866513 3367_ $$00$$2EndNote$$aJournal Article
000866513 520__ $$aWe propose a new approach based on an all-optical set-up for generating relativistic polarized electron beams via vortex Laguerre-Gaussian (LG) laser-driven wakefield acceleration. Using a pre-polarized gas target, we find that the topology of the vortex wakefield resolves the depolarization issue of the injected electrons. In full three-dimensional particle-in-cell simulations, incorporating the spin dynamics via the Thomas-Bargmann Michel Telegdi equation, the LG laser preserves the electron spin polarization by more than 80% while assuring efficient electron injection. The method releases the limit on beam flux for polarized electron acceleration and promises more than an order of magnitude boost in peak flux, as compared to Gaussian beams. These results suggest a promising table-top method to produce energetic polarized electron beams.
000866513 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000866513 588__ $$aDataset connected to CrossRef
000866513 7001_ $$00000-0002-7107-0626$$aJi, Liangliang$$b1
000866513 7001_ $$0P:(DE-HGF)0$$aGeng, Xuesong$$b2
000866513 7001_ $$0P:(DE-Juel1)165750$$aYu, Qin$$b3
000866513 7001_ $$0P:(DE-HGF)0$$aWang, Nengwen$$b4
000866513 7001_ $$0P:(DE-HGF)0$$aFeng, Bo$$b5
000866513 7001_ $$00000-0002-7827-9692$$aGuo, Zhao$$b6
000866513 7001_ $$0P:(DE-HGF)0$$aWang, Weiqing$$b7
000866513 7001_ $$0P:(DE-HGF)0$$aQin, Chengyu$$b8
000866513 7001_ $$0P:(DE-HGF)0$$aYan, Xue$$b9
000866513 7001_ $$0P:(DE-HGF)0$$aZhang, Lingang$$b10
000866513 7001_ $$0P:(DE-HGF)0$$aThomas, Johannes$$b11
000866513 7001_ $$0P:(DE-Juel1)167417$$aHützen, Anna$$b12
000866513 7001_ $$0P:(DE-Juel1)131108$$aBüscher, Markus$$b13
000866513 7001_ $$00000-0002-0385-3936$$aRakitzis, T Peter$$b14
000866513 7001_ $$0P:(DE-HGF)0$$aPukhov, Alexander$$b15
000866513 7001_ $$00000-0003-1021-6991$$aShen, Baifei$$b16
000866513 7001_ $$0P:(DE-HGF)0$$aLi, Ruxin$$b17$$eCorresponding author
000866513 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/ab2fd7$$gVol. 21, no. 7, p. 073052 -$$n7$$p073052 -$$tNew journal of physics$$v21$$x1367-2630$$y2019
000866513 8564_ $$uhttps://juser.fz-juelich.de/record/866513/files/Wu_2019_New_J._Phys._21_073052.pdf$$yOpenAccess
000866513 8564_ $$uhttps://juser.fz-juelich.de/record/866513/files/Wu_2019_New_J._Phys._21_073052.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866513 909CO $$ooai:juser.fz-juelich.de:866513$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866513 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167417$$aForschungszentrum Jülich$$b12$$kFZJ
000866513 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131108$$aForschungszentrum Jülich$$b13$$kFZJ
000866513 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000866513 9141_ $$y2019
000866513 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000866513 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866513 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866513 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW J PHYS : 2017
000866513 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000866513 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000866513 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866513 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866513 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866513 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866513 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866513 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866513 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866513 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866513 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000866513 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866513 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000866513 980__ $$ajournal
000866513 980__ $$aVDB
000866513 980__ $$aUNRESTRICTED
000866513 980__ $$aI:(DE-Juel1)PGI-6-20110106
000866513 9801_ $$aFullTexts