Home > Publications database > Polarized electron-beam acceleration driven by vortex laser pulses > print |
001 | 866513 | ||
005 | 20210130003500.0 | ||
024 | 7 | _ | |a 10.1088/1367-2630/ab2fd7 |2 doi |
024 | 7 | _ | |a 2128/23454 |2 Handle |
024 | 7 | _ | |a altmetric:58789064 |2 altmetric |
024 | 7 | _ | |a WOS:000477660100002 |2 WOS |
037 | _ | _ | |a FZJ-2019-05603 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Wu, Yitong |0 0000-0002-9247-9789 |b 0 |
245 | _ | _ | |a Polarized electron-beam acceleration driven by vortex laser pulses |
260 | _ | _ | |a [London] |c 2019 |b IOP73379 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1574427597_15690 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We propose a new approach based on an all-optical set-up for generating relativistic polarized electron beams via vortex Laguerre-Gaussian (LG) laser-driven wakefield acceleration. Using a pre-polarized gas target, we find that the topology of the vortex wakefield resolves the depolarization issue of the injected electrons. In full three-dimensional particle-in-cell simulations, incorporating the spin dynamics via the Thomas-Bargmann Michel Telegdi equation, the LG laser preserves the electron spin polarization by more than 80% while assuring efficient electron injection. The method releases the limit on beam flux for polarized electron acceleration and promises more than an order of magnitude boost in peak flux, as compared to Gaussian beams. These results suggest a promising table-top method to produce energetic polarized electron beams. |
536 | _ | _ | |a 522 - Controlling Spin-Based Phenomena (POF3-522) |0 G:(DE-HGF)POF3-522 |c POF3-522 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Ji, Liangliang |0 0000-0002-7107-0626 |b 1 |
700 | 1 | _ | |a Geng, Xuesong |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Yu, Qin |0 P:(DE-Juel1)165750 |b 3 |
700 | 1 | _ | |a Wang, Nengwen |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Feng, Bo |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Guo, Zhao |0 0000-0002-7827-9692 |b 6 |
700 | 1 | _ | |a Wang, Weiqing |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Qin, Chengyu |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Yan, Xue |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Zhang, Lingang |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Thomas, Johannes |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Hützen, Anna |0 P:(DE-Juel1)167417 |b 12 |
700 | 1 | _ | |a Büscher, Markus |0 P:(DE-Juel1)131108 |b 13 |
700 | 1 | _ | |a Rakitzis, T Peter |0 0000-0002-0385-3936 |b 14 |
700 | 1 | _ | |a Pukhov, Alexander |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Shen, Baifei |0 0000-0003-1021-6991 |b 16 |
700 | 1 | _ | |a Li, Ruxin |0 P:(DE-HGF)0 |b 17 |e Corresponding author |
773 | _ | _ | |a 10.1088/1367-2630/ab2fd7 |g Vol. 21, no. 7, p. 073052 - |0 PERI:(DE-600)1464444-7 |n 7 |p 073052 - |t New journal of physics |v 21 |y 2019 |x 1367-2630 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/866513/files/Wu_2019_New_J._Phys._21_073052.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/866513/files/Wu_2019_New_J._Phys._21_073052.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:866513 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)167417 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)131108 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-522 |2 G:(DE-HGF)POF3-500 |v Controlling Spin-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEW J PHYS : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-6-20110106 |k PGI-6 |l Elektronische Eigenschaften |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-6-20110106 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|