000866537 001__ 866537
000866537 005__ 20220930130223.0
000866537 0247_ $$2doi$$a10.1002/aelm.201900808
000866537 0247_ $$2Handle$$a2128/23864
000866537 0247_ $$2WOS$$aWOS:000496844200001
000866537 037__ $$aFZJ-2019-05627
000866537 082__ $$a621.3
000866537 1001_ $$0P:(DE-Juel1)161427$$aAndrä, Michael$$b0$$eCorresponding author
000866537 245__ $$aEffect of Cationic Interface Defects on Band Alignment and Contact Resistance in Metal/Oxide Heterojunctions
000866537 260__ $$aChichester$$bWiley$$c2020
000866537 3367_ $$2DRIVER$$aarticle
000866537 3367_ $$2DataCite$$aOutput Types/Journal article
000866537 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581580621_12514
000866537 3367_ $$2BibTeX$$aARTICLE
000866537 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866537 3367_ $$00$$2EndNote$$aJournal Article
000866537 520__ $$aHeterojunctions between high‐work‐function metals and metal oxides typically lead to Schottky‐type transport barriers resulting from charge transfer between the neighboring materials. These yield versatile electronic functionality exploited for current rectification, memristive behavior, or photocatalysis. Height, width, and shape of the interfacial transport barrier are strongly affected by charge screening via ionic defects, which are often extremely difficult to probe. The ionic nature of a variable contact resistance in heterojunctions between Nb‐doped SrTiO3 (Nb:SrTiO3) and platinum is explored. A control of cationic vacancy defects at the interface is achieved by different annealing procedures in oxidizing and reducing conditions before establishing Pt/Nb:SrTiO3 heterojunctions. Detailed analysis of electronic transport across the heterojunctions reveal significantly varied transport barriers resulting from the cationic defect structure at the interface. These findings are supported by conductive‐tip atomic force microscopy and in situ photoemission spectroscopy showing diminished conductivity of the Nb:SrTiO3 surface and the formation of an insulating surface skin layer after oxygenation. At high doping level, oxygen stoichiometry cannot explain the observed behavior. The increased transport barrier height is therefore linked to strontium vacancy defects. The tailored cation disorder yields access to the ionic control of electronic transport in functional oxide heterojunctions.
000866537 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000866537 536__ $$0G:(DE-Juel1)jpgi70_20120501$$aModelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM) (jpgi70_20120501)$$cjpgi70_20120501$$fModelling the Valency Change Memory Effect in Resistive Switching Random Access Memory (RRAM)$$x1
000866537 588__ $$aDataset connected to CrossRef
000866537 7001_ $$0P:(DE-Juel1)165703$$aFunck, Carsten$$b1
000866537 7001_ $$0P:(DE-Juel1)157925$$aRaab, Nicolas$$b2
000866537 7001_ $$0P:(DE-HGF)0$$aRose, Marc‐André$$b3
000866537 7001_ $$0P:(DE-HGF)0$$aVorokhta, Mykhailo$$b4
000866537 7001_ $$0P:(DE-HGF)0$$aDvorˇák, Filip$$b5
000866537 7001_ $$0P:(DE-HGF)0$$aŠmíd, Brˇetislav$$b6
000866537 7001_ $$0P:(DE-HGF)0$$aMatolín, Vladimír$$b7
000866537 7001_ $$0P:(DE-HGF)0$$aMueller, David N.$$b8
000866537 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b9
000866537 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b10
000866537 7001_ $$0P:(DE-Juel1)158062$$aMenzel, Stephan$$b11$$ufzj
000866537 7001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b12$$eCorresponding author
000866537 773__ $$0PERI:(DE-600)2810904-1$$a10.1002/aelm.201900808$$gp. 1900808 -$$n1$$p1900808 -$$tAdvanced electronic materials$$v6$$x2199-160X$$y2020
000866537 8564_ $$uhttps://juser.fz-juelich.de/record/866537/files/Andr-_et_al-2020-Advanced_Electronic_Materials.pdf$$yOpenAccess
000866537 8564_ $$uhttps://juser.fz-juelich.de/record/866537/files/Andr-_et_al-2020-Advanced_Electronic_Materials.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866537 8767_ $$92019-10-21$$d2019-11-18$$eHybrid-OA$$jDEAL$$lDEAL: Wiley$$paelm.201900808
000866537 909CO $$ooai:juser.fz-juelich.de:866537$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000866537 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161427$$aForschungszentrum Jülich$$b0$$kFZJ
000866537 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165703$$aForschungszentrum Jülich$$b1$$kFZJ
000866537 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b9$$kFZJ
000866537 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b10$$kFZJ
000866537 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158062$$aForschungszentrum Jülich$$b11$$kFZJ
000866537 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b12$$kFZJ
000866537 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000866537 9141_ $$y2020
000866537 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866537 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000866537 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ELECTRON MATER : 2017
000866537 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV ELECTRON MATER : 2017
000866537 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866537 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866537 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866537 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866537 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866537 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866537 920__ $$lyes
000866537 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000866537 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000866537 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x2
000866537 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000866537 980__ $$ajournal
000866537 980__ $$aVDB
000866537 980__ $$aI:(DE-Juel1)PGI-7-20110106
000866537 980__ $$aI:(DE-82)080009_20140620
000866537 980__ $$aI:(DE-Juel1)PGI-6-20110106
000866537 980__ $$aI:(DE-82)080012_20140620
000866537 980__ $$aAPC
000866537 980__ $$aUNRESTRICTED
000866537 9801_ $$aAPC
000866537 9801_ $$aFullTexts