000866544 001__ 866544
000866544 005__ 20210130003521.0
000866544 0247_ $$2doi$$a10.1016/j.tsf.2019.04.021
000866544 0247_ $$2ISSN$$a0040-6090
000866544 0247_ $$2ISSN$$a1879-2731
000866544 0247_ $$2WOS$$aWOS:000467389900010
000866544 037__ $$aFZJ-2019-05634
000866544 082__ $$a660
000866544 1001_ $$0P:(DE-Juel1)165992$$aKönigshofen, Samuel$$b0$$eCorresponding author
000866544 245__ $$aEpitaxial and contamination-free Co(0001) electrodes on insulating substrates for molecular spintronic devices
000866544 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2019
000866544 3367_ $$2DRIVER$$aarticle
000866544 3367_ $$2DataCite$$aOutput Types/Journal article
000866544 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1595404586_1220
000866544 3367_ $$2BibTeX$$aARTICLE
000866544 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866544 3367_ $$00$$2EndNote$$aJournal Article
000866544 520__ $$aThe growing field of molecular spintronics is an auspicious route to future concepts of data storage and processing. It has been reported that the hybridization of the electronic structures of non-magnetic organic molecules and ferromagnetic transition-metal (FM) surfaces can form new magnetic units, so-called hybrid molecular magnets, with distinct magnetic properties, which promise molecular spintronic devices with extremely high information density and low energy consumption. The investigation and profound understanding of these device concepts require the formation of clean and epitaxial interfaces between the surface of a FM bottom electrode and molecular thin films. This can only be realized under ultra-high vacuum conditions. In addition, the FM electrodes must be grown on an insulating substrate to electrically separate neighboring devices. Here, we report on procedures to realize an entirely in-situ preparation of mesoscopic test devices featuring structurally and chemically well-defined interfaces. Au(111)-buffered Co(0001) electrodes are deposited by molecular-beam epitaxy onto sapphire or mica substrates using a shadow-mask to define the geometry. The surface quality is subsequently characterized by scanning tunneling microscopy (STM) and other surface science analysis tools. 2,7-dibenzyl 1,4,5,8-naphthalenetetracarboxylic diimide (BNTCDI), which serves as an exemplary molecule, is sublimed through another shadow-mask, and the interface formation in the monolayer regime is also studied by STM. Finally, we deposit a Cu top electrode through yet another shadow-mask to complete a mesoscopic (200 × 200 μm2) test device, which reveals in ex-situ transport measurements for the Co/BNTCDI/Cu junction non-metallic behavior and a resistance-area product of 24 MΩ·μm2 at 10 K.
000866544 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000866544 588__ $$aDataset connected to CrossRef
000866544 7001_ $$0P:(DE-Juel1)130822$$aMatthes, Frank$$b1
000866544 7001_ $$0P:(DE-Juel1)130582$$aBürgler, Daniel E.$$b2
000866544 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus M.$$b3
000866544 7001_ $$0P:(DE-HGF)0$$aDirksen, Elena$$b4
000866544 7001_ $$0P:(DE-HGF)0$$aMüller, Thomas J. J.$$b5
000866544 773__ $$0PERI:(DE-600)1482896-0$$a10.1016/j.tsf.2019.04.021$$gVol. 680, p. 67 - 74$$p67 - 74$$tThin solid films$$v680$$x0040-6090$$y2019
000866544 909CO $$ooai:juser.fz-juelich.de:866544$$pVDB
000866544 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130822$$aForschungszentrum Jülich$$b1$$kFZJ
000866544 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130582$$aForschungszentrum Jülich$$b2$$kFZJ
000866544 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b3$$kFZJ
000866544 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000866544 9141_ $$y2019
000866544 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000866544 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTHIN SOLID FILMS : 2017
000866544 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866544 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866544 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866544 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866544 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866544 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866544 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866544 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866544 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866544 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000866544 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866544 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000866544 980__ $$ajournal
000866544 980__ $$aVDB
000866544 980__ $$aI:(DE-Juel1)PGI-6-20110106
000866544 980__ $$aUNRESTRICTED