001     866555
005     20210130003524.0
024 7 _ |a 10.1016/j.geoderma.2019.05.001
|2 doi
024 7 _ |a 0016-7061
|2 ISSN
024 7 _ |a 1872-6259
|2 ISSN
024 7 _ |a altmetric:61533517
|2 altmetric
024 7 _ |a WOS:000474495700024
|2 WOS
037 _ _ |a FZJ-2019-05645
082 _ _ |a 910
100 1 _ |a Krause, Lars
|0 P:(DE-Juel1)168258
|b 0
|u fzj
245 _ _ |a Initial microaggregate formation: Association of microorganisms to montmorillonite-goethite aggregates under wetting and drying cycles
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1574346846_25087
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a There is an intimate relationship between microorganisms and the formation and stability of soil microaggregates, realized by the immobilization and occlusion of microorganisms. Little is known about the initial aggregate formation phase and the role of microorganisms in this process under the impact of environmental changes such as wetting and drying. We investigated this initial aggregate formation process of montmorillonite and goethite in combination with two bacterial strains, Pseudomonas protegens strain CHA0 and Gordonia alkanivorans strain MoAcy 2, in the presence or absence of stress conditions in form of wetting and drying cycles for up to eight days. Montmorillonite and goethite formed microaggregates instantaneously, the size of these aggregates being enhanced in the presence of microorganisms, resulting in up to twofold larger aggregates. This increase in aggregate size was strain-dependent. However, the aggregates that developed during the first 48 h broke into smaller structures later on. A microscopic analysis of the microaggregates revealed that notably the larger microaggregates harbored bacteria and that microaggregates had a sheltering effect on living cells, especially when exposed to desiccation stress. Additionally, aggregate formation was analyzed in the presence of a Pseudomonas protegens mutant strain (CHA211) with increased production capability of extracellular polymeric substances (EPS). About fivefold higher survival rates of culturable cells were observed after desiccation for this EPS overproducing mutant strain in comparison to the wild-type. Our results hint at an aggregate formation process characterized by a rapid occlusion of mineral compounds, and, after the addition of microorganisms, the bacterial colonization of small microaggregates, leading to an increase in aggregate size. The further development of the aggregate size distribution varied depending on the presence of microbial taxa and was modulated by environmental conditions like desiccation events.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Biesgen, Danh
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Treder, Aaron
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schweizer, Steffen A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Klumpp, Erwin
|0 P:(DE-Juel1)129484
|b 4
|u fzj
700 1 _ |a Knief, Claudia
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
700 1 _ |a Siebers, Nina
|0 P:(DE-Juel1)164361
|b 6
|e Corresponding author
773 _ _ |a 10.1016/j.geoderma.2019.05.001
|g Vol. 351, p. 250 - 260
|0 PERI:(DE-600)2001729-7
|p 250 - 260
|t Geoderma
|v 351
|y 2019
|x 0016-7061
856 4 _ |u https://juser.fz-juelich.de/record/866555/files/Accepted.docx
|y Restricted
909 C O |o oai:juser.fz-juelich.de:866555
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168258
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129484
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)164361
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEODERMA : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21