000866569 001__ 866569
000866569 005__ 20240711085650.0
000866569 0247_ $$2doi$$a10.1016/j.ssi.2019.115138
000866569 0247_ $$2ISSN$$a0167-2738
000866569 0247_ $$2ISSN$$a1872-7689
000866569 0247_ $$2Handle$$a2128/23925
000866569 0247_ $$2WOS$$aWOS:000509787200011
000866569 037__ $$aFZJ-2019-05652
000866569 082__ $$a530
000866569 1001_ $$0P:(DE-Juel1)171242$$aZhang, Jun$$b0$$eCorresponding author
000866569 245__ $$aComparison of solid oxide fuel cell (SOFC) electrolyte materials for operation at 500 °C
000866569 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000866569 3367_ $$2DRIVER$$aarticle
000866569 3367_ $$2DataCite$$aOutput Types/Journal article
000866569 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1579520599_30847
000866569 3367_ $$2BibTeX$$aARTICLE
000866569 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866569 3367_ $$00$$2EndNote$$aJournal Article
000866569 520__ $$aSolid oxide fuel cells (SOFCs) operating at low temperature (~500 °C) enable new fields of application, such as auxiliary power units (APUs) or power generation for mobile applications. However, the state-of-the-art electrolyte material currently used in intermediate-temperature SOFCs (yttria-stabilized zirconia (YSZ)) does not provide sufficiently high ionic conductivity for low temperature applications. When looking for alternatives, the conductivity values for each material found in widely cited literature can be confusing, as the reported values are sometimes in conflict with each other. Therefore, we present a systematic comparison of the conductivity of the three most popular, commercially available electrolyte materials, i.e., YSZ, scandia-stabilized zirconia (ScSZ), and gadolinium-doped ceria (GDC). By using electrochemical impedance spectroscopy (EIS) to characterize the ionic conductivities, we find that at 500 °C, GDC has a higher ionic conductivity (5.8 × 10−3 S cm−1) than ScSZ (2.5 × 10−3 S cm−1) and YSZ (1.1 × 10−3 S cm−1). The properties of the starting powders, powder processing and the microstructure after sintering were considered. This conductivity comparison can be used as a guide when deciding on electrolyte materials for different SOFC applications, especially when the fabrication of different thickness of the electrolyte layer has to be considered and rectify misleading information in the literature.
000866569 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000866569 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000866569 588__ $$aDataset connected to CrossRef
000866569 7001_ $$0P:(DE-Juel1)138081$$aLenser, Christian$$b1$$ufzj
000866569 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b2$$ufzj
000866569 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b3$$ufzj
000866569 773__ $$0PERI:(DE-600)1500750-9$$a10.1016/j.ssi.2019.115138$$gVol. 344, p. 115138 -$$p115138 -$$tSolid state ionics$$v344$$x0167-2738$$y2020
000866569 8564_ $$uhttps://juser.fz-juelich.de/record/866569/files/1-s2.0-S0167273819307039-main.pdf$$yRestricted
000866569 8564_ $$uhttps://juser.fz-juelich.de/record/866569/files/manuscript_final_CL.pdf$$yPublished on 2019-11-14. Available in OpenAccess from 2021-11-14.
000866569 8564_ $$uhttps://juser.fz-juelich.de/record/866569/files/manuscript_final_CL.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-11-14. Available in OpenAccess from 2021-11-14.
000866569 8564_ $$uhttps://juser.fz-juelich.de/record/866569/files/1-s2.0-S0167273819307039-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866569 909CO $$ooai:juser.fz-juelich.de:866569$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171242$$aForschungszentrum Jülich$$b0$$kFZJ
000866569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138081$$aForschungszentrum Jülich$$b1$$kFZJ
000866569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b2$$kFZJ
000866569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b3$$kFZJ
000866569 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000866569 9141_ $$y2020
000866569 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866569 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866569 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000866569 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE IONICS : 2017
000866569 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866569 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866569 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866569 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866569 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866569 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866569 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866569 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000866569 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866569 920__ $$lyes
000866569 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000866569 9801_ $$aFullTexts
000866569 980__ $$ajournal
000866569 980__ $$aVDB
000866569 980__ $$aUNRESTRICTED
000866569 980__ $$aI:(DE-Juel1)IEK-1-20101013
000866569 981__ $$aI:(DE-Juel1)IMD-2-20101013