000866574 001__ 866574
000866574 005__ 20240711085600.0
000866574 0247_ $$2doi$$a10.1016/j.flatc.2019.100143
000866574 0247_ $$2WOS$$aWOS:000508824600004
000866574 037__ $$aFZJ-2019-05657
000866574 082__ $$a540
000866574 1001_ $$0P:(DE-HGF)0$$aLuxa, Jan$$b0
000866574 245__ $$aBlack phosphorus- arsenic alloys for lithium ion batteries
000866574 260__ $$aAmsterdam$$bElsevier$$c2020
000866574 3367_ $$2DRIVER$$aarticle
000866574 3367_ $$2DataCite$$aOutput Types/Journal article
000866574 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576650709_4543
000866574 3367_ $$2BibTeX$$aARTICLE
000866574 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866574 3367_ $$00$$2EndNote$$aJournal Article
000866574 520__ $$aPhosphorus and arsenic belong to the 5th group of elements – so-called pnictogens. These materials are among the most intensively studied nanomaterials with layered structure. In this contribution we report the synthesis of arsenic – black phosphorus alloys. Two samples with various black phosphorus and arsenic content together with pure black phosphorus were exfoliated using shear force milling. Extensive analyses have revealed the successful synthesis of AsP alloys with good crystallinity and composition close to that of the intended value. Testing these materials for lithium ion batteries (LIBs) shows that there is a huge capacity loss after the initial charge/discharge cycles. Such a drop was attributed to a delithiation of the lithium rich phase and a loss of proper electrical contact. After the initial capacity loss, the Coulombic efficiencies in the subsequent cycles reached 90-99%. Moreover, both of the alloys exhibited higher capacity than pure black phosphorus sample, indicating that alloying with arsenic is an advantageous technique. The results of this work show the fundamental charge storage capabilities of AsP alloys a can serve as a starting point for the synthesis of advanced materials based on AsP alloys.
000866574 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000866574 588__ $$aDataset connected to CrossRef
000866574 7001_ $$0P:(DE-HGF)0$$aBouša, Daniel$$b1
000866574 7001_ $$0P:(DE-Juel1)179146$$aZoller, Florian$$b2
000866574 7001_ $$00000-0003-2008-0151$$aFattakhova-Rohlfing, Dina$$b3
000866574 7001_ $$0P:(DE-HGF)0$$aSofer, Zdeněk$$b4$$eCorresponding author
000866574 773__ $$0PERI:(DE-600)2873498-1$$a10.1016/j.flatc.2019.100143$$gp. 100143 -$$p100143 -$$tFlatChem$$v19$$x2452-2627$$y2020
000866574 8564_ $$uhttps://juser.fz-juelich.de/record/866574/files/1-s2.0-S245226271930090X-main.pdf$$yRestricted
000866574 8564_ $$uhttps://juser.fz-juelich.de/record/866574/files/1-s2.0-S245226271930090X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866574 909CO $$ooai:juser.fz-juelich.de:866574$$pVDB
000866574 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179146$$aForschungszentrum Jülich$$b2$$kFZJ
000866574 9101_ $$0I:(DE-588b)5008462-8$$60000-0003-2008-0151$$aForschungszentrum Jülich$$b3$$kFZJ
000866574 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000866574 9141_ $$y2020
000866574 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866574 920__ $$lyes
000866574 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000866574 980__ $$ajournal
000866574 980__ $$aVDB
000866574 980__ $$aI:(DE-Juel1)IEK-1-20101013
000866574 980__ $$aUNRESTRICTED
000866574 981__ $$aI:(DE-Juel1)IMD-2-20101013