001     866574
005     20240711085600.0
024 7 _ |a 10.1016/j.flatc.2019.100143
|2 doi
024 7 _ |a WOS:000508824600004
|2 WOS
037 _ _ |a FZJ-2019-05657
082 _ _ |a 540
100 1 _ |a Luxa, Jan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Black phosphorus- arsenic alloys for lithium ion batteries
260 _ _ |a Amsterdam
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1576650709_4543
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Phosphorus and arsenic belong to the 5th group of elements – so-called pnictogens. These materials are among the most intensively studied nanomaterials with layered structure. In this contribution we report the synthesis of arsenic – black phosphorus alloys. Two samples with various black phosphorus and arsenic content together with pure black phosphorus were exfoliated using shear force milling. Extensive analyses have revealed the successful synthesis of AsP alloys with good crystallinity and composition close to that of the intended value. Testing these materials for lithium ion batteries (LIBs) shows that there is a huge capacity loss after the initial charge/discharge cycles. Such a drop was attributed to a delithiation of the lithium rich phase and a loss of proper electrical contact. After the initial capacity loss, the Coulombic efficiencies in the subsequent cycles reached 90-99%. Moreover, both of the alloys exhibited higher capacity than pure black phosphorus sample, indicating that alloying with arsenic is an advantageous technique. The results of this work show the fundamental charge storage capabilities of AsP alloys a can serve as a starting point for the synthesis of advanced materials based on AsP alloys.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bouša, Daniel
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zoller, Florian
|0 P:(DE-Juel1)179146
|b 2
700 1 _ |a Fattakhova-Rohlfing, Dina
|0 0000-0003-2008-0151
|b 3
700 1 _ |a Sofer, Zdeněk
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1016/j.flatc.2019.100143
|g p. 100143 -
|0 PERI:(DE-600)2873498-1
|p 100143 -
|t FlatChem
|v 19
|y 2020
|x 2452-2627
856 4 _ |u https://juser.fz-juelich.de/record/866574/files/1-s2.0-S245226271930090X-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/866574/files/1-s2.0-S245226271930090X-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:866574
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179146
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 0000-0003-2008-0151
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21