001     866582
005     20210130003530.0
024 7 _ |a 10.1111/nph.15864
|2 doi
024 7 _ |a 0028-646X
|2 ISSN
024 7 _ |a 1469-8137
|2 ISSN
024 7 _ |a altmetric:59706035
|2 altmetric
024 7 _ |a pmid:31004496
|2 pmid
024 7 _ |a WOS:000477247700001
|2 WOS
024 7 _ |a 2128/24770
|2 Handle
037 _ _ |a FZJ-2019-05665
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Munns, Rana
|0 0000-0002-7519-2698
|b 0
245 _ _ |a Energy costs of salt tolerance in crop plants
260 _ _ |a Oxford [u.a.]
|c 2020
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1580739612_822
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Agriculture is expanding into regions that are affected by salinity. This review considers the energetic costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of costs. Different sources of energy, and modifications of root system architecture that would maximize water vs ion uptake are addressed. Energy requirements for transport of salt (NaCl) to leaf vacuoles for osmotic adjustment could be small if there are no substantial leaks back across plasma membrane and tonoplast in root and leaf. The coupling ratio of the H+‐ATPase also is a critical component. One proposed leak, that of Na+ influx across the plasma membrane through certain aquaporin channels, might be coupled to water flow, thus conserving energy. For the tonoplast, control of two types of cation channels is required for energy efficiency. Transporters controlling the Na+ and Cl− concentrations in mitochondria and chloroplasts are largely unknown and could be a major energy cost. The complexity of the system will require a sophisticated modelling approach to identify critical transporters, apoplastic barriers and root structures. This modelling approach will inform experimentation and allow a quantitative assessment of the energy costs of NaCl tolerance to guide breeding and engineering of molecular components.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Day, David A.
|0 0000-0001-7967-2173
|b 1
700 1 _ |a Fricke, Wieland
|0 0000-0002-1514-1389
|b 2
700 1 _ |a Watt, Michelle
|0 P:(DE-Juel1)166460
|b 3
700 1 _ |a Arsova, Borjana
|0 P:(DE-Juel1)165155
|b 4
700 1 _ |a Barkla, Bronwyn J.
|0 0000-0002-4691-8023
|b 5
700 1 _ |a Bose, Jayakumar
|0 0000-0002-0565-2951
|b 6
700 1 _ |a Byrt, Caitlin S.
|0 0000-0001-8549-2873
|b 7
700 1 _ |a Chen, Zhong‐Hua
|0 0000-0002-7531-320X
|b 8
700 1 _ |a Foster, Kylie J.
|0 0000-0003-2651-3915
|b 9
700 1 _ |a Gilliham, Matthew
|0 0000-0003-0666-3078
|b 10
700 1 _ |a Henderson, Sam W.
|0 0000-0003-3019-1891
|b 11
700 1 _ |a Jenkins, Colin L. D.
|0 0000-0002-9347-8948
|b 12
700 1 _ |a Kronzucker, Herbert J.
|0 0000-0002-9358-0029
|b 13
700 1 _ |a Miklavcic, Stanley J.
|0 0000-0002-2361-246X
|b 14
700 1 _ |a Plett, Darren
|0 0000-0002-9551-8755
|b 15
700 1 _ |a Roy, Stuart J.
|0 0000-0003-0411-9431
|b 16
700 1 _ |a Shabala, Sergey
|0 0000-0003-2345-8981
|b 17
700 1 _ |a Shelden, Megan C.
|0 0000-0002-7203-3763
|b 18
700 1 _ |a Soole, Kathleen L.
|0 0000-0002-8837-3404
|b 19
700 1 _ |a Taylor, Nicolas L.
|0 0000-0003-2004-5217
|b 20
700 1 _ |a Tester, Mark
|0 0000-0002-5085-8801
|b 21
700 1 _ |a Wege, Stefanie
|0 0000-0002-7232-5889
|b 22
700 1 _ |a Wegner, Lars H.
|0 0000-0002-9263-8436
|b 23
700 1 _ |a Tyerman, Stephen D.
|0 0000-0003-2455-1643
|b 24
|e Corresponding author
773 _ _ |a 10.1111/nph.15864
|g p. nph.15864
|0 PERI:(DE-600)1472194-6
|n 3
|p 1072-1090
|t The new phytologist
|v 225
|y 2020
|x 1469-8137
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/866582/files/Munns_et_al-2020-New_Phytologist-1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/866582/files/Munns_et_al-2020-New_Phytologist-1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866582
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166460
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165155
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEW PHYTOL : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEW PHYTOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21