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Summary

Agricultureisexpandingintoregionsthatareaffectedbysalinity.Thisreviewconsiderstheenergetic

costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of

costs. Different sources of energy, and modifications of root system architecture that would

maximizewatervs ionuptakeareaddressed.Energyrequirements for transportofsalt (NaCl) to leaf

vacuoles for osmotic adjustment could be small if there are no substantial leaks back across plasma

membrane and tonoplast in root and leaf. The coupling ratio of the H+-ATPase also is a critical

component. One proposed leak, that of Na+ influx across the plasma membrane through certain

aquaporin channels, might be coupled to water flow, thus conserving energy. For the tonoplast,

controloftwotypesofcationchannels is requiredforenergyefficiency.Transporterscontrollingthe

Na+ andCl� concentrations inmitochondria and chloroplasts are largely unknown and could be a

major energy cost. The complexityof the systemwill requirea sophisticatedmodelling approach to

identify critical transporters, apoplastic barriers and root structures. This modelling approach will

informexperimentationandallowaquantitativeassessmentoftheenergycostsofNaCltoleranceto

guide breeding and engineering ofmolecular components.

I. Introduction

Soil salinity in agricultural areas is increasing world-wide due to
irrigation with brackish water and to seawater encroachment on
low-lying coastal regions. Its impact on crop production is further
increasing as the global demand for foodmeans agriculture extends
into naturally salt-affected lands (Fig. 1a).

Salt tolerance for crop plants means the ability to grow, albeit
more slowly, and produce a harvestable yield. The degree of salinity
that affects crop yields depends on species, duration of exposure and
the stage of crop development at which stress occurs. Saline soil
(predominantly Na+ and Cl� salts) is defined as having an
ECe > 4 dS m�1 equivalent to 40 mMNaCl (Box 1), and in a well-
drained soil would be twice this, c. 80 mM NaCl. This would
reduce the growth of most crops by 15–20% (Munns & Tester,
2008). A higher soil salt concentration would increasingly reduce
growth, but the extent of yield reduction is hard to predict as saline
soils are never uniformly saline across a given area and at depth
(Fig. 1b).

The precise cause of the growth reduction remains elusive – is it a
pre-emptive response to conserve resources via feed-forward root
signals that reduce leaf expansion and stomatal conductance, or a
result of the reduction in supply of photosynthate? Is the plant
adapting to conserve energy and use it more efficiently, or is a
reduced supply of energy from photosynthesis limiting its growth?
These principles apply to a dry soil as much as to a saline soil
(Munns, 2002).

Adaptions to saline soil are many. There is a delicate balance
between excludingmost of the salt to avoid it concentrating in leaves
and take upenough forosmotic adjustment.Plants in saline soilmust
exclude almost all (c. 98%) the salt as otherwise leaf concentrations
would quickly rise to toxic concentrations (Munns et al., 2020).
Osmotic adjustment using Na+ and Cl� is ‘cheaper’ than using
organic solutes, so long as the salt is sequestered in vacuoles whereas
organic solutes provide the balancing osmotic pressure in the
cytoplasm (Munns & Gilliham, 2015). Plants can avoid the high
carbon (C) cost of organic solutes for osmotic adjustment by using
mainly Na+ and Cl� but this also comes with a cost.

(a)

(b)

ECa range 75–139 mS m–1 ECa range 129–180 mS m–1

Soil depth 0–50 cm Soil depth 0–100 cm

Fig. 1 Field observations of salinity. (a) Barley growing in naturally salt-
affected field near Corrigin, Western Australia. Photo courtesy Stuart Roy.
(b) Typical variation in soil salinity spatially and at depth.Measurementswith
EM38 ground conductivity meter show the apparent electrical conductivity
(ECa; mSm�1) in a farmer’s paddock at two soil depths (0–50 cm and 0–
100 cm) at Whitwarta, South Australia. The area shown is 0.65 ha (about
80m2). Red, low ECa; blue, high ECa. Figuremodified fromAsif et al. (2018)
under the terms of the Creative Commons Attribution 4.0 International
License.
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This review considers the costs of salt tolerance at both the
whole-plant and cell levels. The costs of regulating ion and water
uptake, and transport within the plant, are compared with the
energy available from respiration to identify the most cost-efficient
strategy, as a guide to breeding salt-tolerant crops.

II. Tissue respiration and energy supply

1. Mitochondrial ATP supply and the alternative pathway

The plant mitochondrial electron transport chain (mETC)
contains two interconnected pathways with different terminal
oxidases: cytochrome c oxidase (COX) as part of the phosphory-
lating, energy-conserving classical mETC, and the alternative
oxidase (AOX), which together with alternative NAD(P)H
dehydrogenases forms a nonphosphorylating bypass of the classical
mETC (Millar et al., 2011; Vanlerberghe, 2013; Fig. 2). Electron
transport entirely through the alternative pathway is not coupled to
ATP synthesis and its operation can have a substantial impact on
the efficiency of respiration by affecting the tissue ATP : O2 ratio
(Box 2; Supporting Information Notes S1). The activity of the
alternative pathway in vivo often is stimulated by environmental
stresses (Selinski et al., 2018), including salinity (Del-Saz et al.,
2016). The role of the alternative pathway in plants remains
uncertain but evidence suggests that it minimizes production of
reactive oxygen species (ROS) in mitochondria and plays an
important role in stress tolerance. In a study on the effect of salinity
on Arabidopsis, both external NADH oxidation and AOX
increased in capacity because of an increase in the amount of the
relevant proteins (Smith et al., 2009). Likewise, in an analysis of the
mitochondrial proteome from salt-stressed wheat, a number of
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Fig. 2 The reactions and enzymes of the plant mitochondrial TCA cycle, c-
aminobutyric acid (GABA) shunt and mitochondrial electron transfer chain
(mETC) linking matrix NAD+ and NADH pools and ATP production. The
GABA shunt bypasses the oxoglutarate dehydrogenase complex catalyzed
step of the TCA cycle. The enzymes and complexes involved cytochrome
pathway (Cyt Path) respiration (red), alternative pathway (Alt Path)
respiration (green) and Complex V (CV) ATP production (light blue) and the
import and export of its reactants and products (dark blue) by the adenine
nucleotide translocator (ANT) and phosphate carrier (PiC) located on the
innermitochondrial membrane. This links to the pools of reductants (R) such
asNADHandoxidants (O) such asNAD+ that are recycled by thematrix TCA
cycleorotheralternativedehydrogenases (AltDH). TheGABAshunt (purple)
includes transport steps across the mitochondrial membranes and enzyme
reactions in both cytosol andmatrix, which can play a part in bypassing parts
of the TCA cycle that become inhibited under stress (Che-Othman et al.,
2020).

Box 1

Standard units and conversions

Electrical conductivity (EC): 1 dSm�1 = 10mM NaCl
ECe is EC of a saturated soil paste extract. A saturated soil has about twice the water content of a well-drained soil (at field capacity), which would
decrease further during periods without rain.
ECa is apparent EC,measuredwith a ground conductivitymeter such as EM38.Usually given inmSm�1 (1009dSm�1).Must be calibrated against soil
samples.
Osmotic pressure (p) = cRT (van’tHoff equation)where c is the solute concentration inOsmol l�1, andRT (gas constant x temperature (Kelvin)) is 2.48
at 25°C (litre xMPa per mole). An ideal solution with osmotic potential of -0.1MPa has 40mOsmol l �1 total solutes or 20mmol l �1 NaCl.

Growth parameters – for wheat or barley in moderate salinity (150mM NaCl or 15 dSm�1) in supported hydroponics

Growth rates (RGR) in saline soil: 0.1 g g�1 d�1 (Colmer et al., 1995; Rivelli et al., 2002)
Photosynthesis rates: 25–28 lmol m�2 s�1 (James et al., 2002; Fricke, 2017; Rawson, 1986)
Leaf respiration rates: 7 lmol g�1

(FW) h
�1; 0.5–1.0 lmol m�2 s�1 (Scafaro et al., 2017; Rawson, 1986)

Specific leaf area: 35m2 kg�1 DW (Rawson et al., 1987)
Conversion of leaf respiration (R) from leaf area to FW basis (from lmol m�2 s�1 to lmol g�1

(FW) h
�1) is therefore R9 SLA� FW/

DW� 10009 609 60
FW/DW for leaves ranges from 4 to 10 depending on species.
Typical root respiration rate: 10–25 lmol g�1

(FW) h
�1 (Alexova et al., 2015; Scafaro et al., 2017)

ATP produced by respiration (O2 consumption) ATP : O2 is 4.5 (Box 2)
Root surface area : FW ratio: 70 cm2 g�1

(FW) (W. Fricke, pers. com.)
Typical FW : DWfor roots grown inhydroponics: 15 : 1 (Husainet al., 2004;Chen et al., 2005); and for roots grown in soil or forwoodyperennials: c. 10 : 1.
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antioxidant defence enzymes were increased in abundance, with
AOX among the most abundant (Jacoby et al., 2013). AOX also
may play a more general role in the homeostasis of cell metabolism
by modulating TCA cycle operation under conditions where
respiration is restricted by cellular energy status (Vanlerberghe,
2013), and this may be important for the synthesis of secondary
metabolites, including compatible solutes under saline conditions.

In many plants, AOX synthesis is stimulated by environmental
and chemical stress, although it is usually low in the absence of stress
(Selinski et al., 2018). Inhibition of the mETC also triggers AOX
synthesis, which is pertinent because high salt concentrations can
inhibit cytochrome path activity in isolated mitochondria (Jacoby
et al., 2011). In some other plants, particularly legumes, AOX
protein is expressed constitutively and its activity can be substantial
although subject to post-translational regulation by mitochondrial
redox status and the presence of certain organic acids, especially
pyruvate (Selinski et al., 2018). In legumes, AOX contribution to
respiration varies depending on tissue and developmental stage,
and the imposition of stresses such as drought and salinity. It can be
very significant, leading to decreases in ATP concentrations in vivo
(Millar et al., 1998; Ribas-Carbo et al., 2005; Del-Saz et al., 2016).
Mitochondria isolated frommost species readily oxidize exogenous

NADH, but we know little about the regulation of the alternative
NAD(P)Hdehydrogenases in vivo. Some of the alternativeNADH
dehydrogenases are transcriptionally responsive to salt stress (Smith
et al., 2009), and the oxidation of external NADH is stimulated by
salt in isolated mitochondria. The oxidation of malate, pyruvate,
succinate and glutamate, however, is inhibited, indicating a
differential effect of salt on tissue respiration depending on the
substrate respired (Jacoby et al., 2016).

Relatively few accurate studies on the in vivo contribution of
AOX to respiration have been made, mainly because of the
difficulty involved in these studies. Accurate estimations require
mass spectrometry to measure 18O discrimination between AOX
and COX (Del-Saz et al., 2017). Because AOX activity has the
potential to severely impact respiratory efficiency, it is important
that more in vivomeasurements of AOX engagement in a variety of
species under saline conditions are made if we are to fully
understand the energetics of salt tolerance.

2. Sources of NADH for tissue respiration

Tissue respiration is at the centre of plant metabolic networks as the
TCA cycle links it to both C and nitrogen (N) metabolism and

Box 2

(a) Calculation of in vivo ATP : O2 ratios (see Siedow & Day, 2000 for details)

ATP : O2 ratios can vary in vivo between 5.0 and 1.75 during sucrose oxidation in plant tissues, depending on the relative contributions of the
cytochrome path and the alternative pathway, which, in turn, depends on environmental conditions. Oxidation of one molecule of sucrose via
glycolysis yields 4 ATP directly as well as 4 pyruvate molecules and 4 NADH for further oxidation in the mitochondria. Complete oxidation of the
pyruvate and NADH in themitochondria consumes 12O2 and yields a number of ATP depending on the electron transport pathway engaged. Taking
into account the magnitude of the proton motive force across the mitochondrial inner membrane (typically 240mV), 3H+ must move through the
ATP synthase to generate an ATPmolecule; the need to import Pi and ADP and export ATP consumes another H+ equivalent, giving an H+ : ATP of 4.
Measurements with isolated mitochondria indicate that 10 H+ are translocated out of the mitochondria for each NADH oxidized via Complex I of the
mETC, giving a maximal ATP : O ratio of 2.5, and 6H+ for each succinate or external NADH oxidized, giving an ATP : O ratio of 1.5. From this it
follows that when only the cytochrome pathway of the mETC operates, the yield of ATP from the complete oxidation of one sucrose molecule yields
60 ATP (and an ATP : O2 of 5). If electron flow is via AOX, then this drops to 21 ATP (and an ATP : O2 of 1.75, assuming that intramitochondrial
NADH is oxidized only via Complex I rather than through the internal alternative NADH dehydrogenases). In reality, the in vivo ATP : O2 ratio will be
somewhere between the two extremes, depending on the relative contributions of the cytochrome path and the alternative pathway, which in turn
depends on environmental conditions. For example, if the proportion of respiratory electron flow through AOX increases from 10% to 30% under
salt stress, then the ATP : O2 ratio would drop from about 4.7 to 4.

(b) Calculation of energy fixed through photosynthesis

Net CO2 assimilation (A) can be calculated from the rates of Rubisco carboxylation (Vc) and oxygenation (Vo), and theCO2 release frommitochondrial
day respiration (Rd) using the following formula (Rawson, 1986; Walker et al., 2016).

A ¼ Vc � 0:5 Vo � Rd

EachRubiscooxygenation reaction consumes3.25ATPand2NADPH,andcarboxylation reactionconsumes3ATPand2NADPH(Wingleret al., 2000;
Miller et al., 2010). Total energy requirement per CO2 assimilation can be calculated by summing the energy requirements oxygenation and
carboxylation reactions. Taking A = 1 (Vc = 1.25, Vo = 0.5, Rd = 0, units of molar flux) the energy requirement will be

1:25 ð3 ATPþ 2 NADPHÞ þ 0:5ð3:25 ATPþ 2 NADPHÞ ¼ 5:375 ATPþ 3:5 NADPH

As the energy partitioning during photosynthesis and photorespiration is predictable, the requirement of ATP andNADPH can bemodelled during salt
stress using pre-existing resources (Walker et al., 2016; http://demonstrations.wolfram.com/FluxesAndEnergeticsOfPhotosynthesisAndPhotore
spiration/).
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supplies much of the NADH required to maintain ATP supply
(Nunes-Nesi et al., 2013). Salt inhibition of the TCA cycle could
activate alternativemetabolic routes, including the gamma-aminobu-
tyric acid (GABA) shunt pathway (Krasensky& Jonak, 2012;Nunes-
Nesi et al., 2013). The GABA shunt bypasses the oxoglutarate
dehydrogenase complex (OGDC) catalysed Julkowska of the TCA
cycle (Fig. 2), producing glutamate that enters the mitochondria for
further catabolism (Che-Othman et al., 2020; Fig. 2). The GABA
shunt is thought to be important in stress adaptation in plants by
regulating cytosolic pH, limiting ROS production, regulating N
metabolism and bypassing steps in the TCA cycle (Carillo, 2018).
Links are suggested between salinity exposure and activity of the
GABA shunt (Che-Othman et al., 2017), but the exactmechanismof
induction and its consequences for tissue respiration are only just
starting to be revealed (Che-Othman et al., 2020).

In addition to TCA cycle enzymes and Glycine Decarboxylase
Complex (GDC), it is likely that alternative sources ofNADHmay
become significant under exposure to salinity. The induction of
other dehydrogenases is observed in other stresses, where amino
acids are broken down and increases are seen in branched chain
amino acid catabolism enzymes (Peng et al., 2015). Some of these

dehydrogenases have been shown to contribute electrons directly to
the ubiquinone pool of themETC, effectively bypassingComplex I
and consequently altering ATP synthesis. Improving our under-
standingof these differentmetabolic pathwayswill be required ifwe
are to fully understand the implications of salinity exposure on
NADH supply and mitochondrial ATP production.

The contribution of beta-oxidation of fatty acids to energy
supply during salt stress is unknown, butwedonot consider it likely
to play a major role in plant adaptation to this stress. The
participation of mitochondria in this process in plants is contro-
versial and it is generally assumed that most beta-oxidation occurs
in the peroxisomes. The extent to which this contributes to ATP
production is likely to depend on species and tissue, and has not
been investigated to our knowledge. More work is needed,
especially under saline conditions.

3. Vacuolar proton-pumping pyrophosphatases provide
additional energy sources for salinity tolerance

High-energy phosphate containing molecules other than ATP can
be used for energizing processes. Vacuolar pyrophosphatases
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Fig. 3 A variety of roles for the vacuolar proton-pumping pyrophosphatase. A generic plant cell showing the variety of ways the vacuolar proton pumping
pyrophosphatase (H+ -PPase) can provide an alternative source of energy during salinity stress. (1) Vacuolar acidification. Localized to the tonoplast, the
vacuolar H+-PPase (blue) will use energy released from the hydrolysis of PPi to orthophosphate (Pi) to pump protons (H+) into the vacuole. Along with
vacuolar ATPases (purple), vacuolar H+-PPases establish an electrochemical potential for H+ across the tonoplast, which is used by other vacuolar
transporters (red & brown) to sequester Na+ and Cl� into the vacuole. (2) Removal of inhibitory pyrophosphate (PPi). Vacuolar H+-PPases regulate PPi
concentrations in the cytosol. Accumulation of PPi in the cytosol, particularly in younger tissues, can inhibit PPi-dependent metabolic pathways, such as
gluconeogenesis and the Smirnoff–Wheeler pathway. (3) Enhancing sucrose transport from source to sink tissues. In phloem companion cells, H+-PPases are
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sucrose metabolism in these cells, thereby generating more ATP to pump protons into the apoplast which can be used by sucrose transporters, ultimately
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Figure modified from Khadilkar et al. (2016) and Schilling et al. (2017).
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(Vacuolar H+-PPase, EC.3.6.1.1) pump protons across the
tonoplast into vacuoles (Gaxiola et al., 2016; Schilling et al., 2017),
using pyrophosphate (PPi) as an energy source (Fig. 3). They work
together with vacuolar H+-ATPases to acidify the vacuole (Kriegel
et al., 2015; Schilling et al., 2017). Plants with high expression of
vacuolar H+-PPases have significant abiotic stress tolerance,
including salinity tolerance (Gaxiola et al., 2016; Schilling et al.,
2017).

Vacuolar H+-PPases may be particularly important when ATP
supply is limited during abiotic stress. A significant portion of
vacuolar acidification may be generated by non-ATPase pathways
and used by Na+/H+ and Cl�/H+ antiporters to sequester Na+ and
Cl� in the vacuole as part of a tissue tolerance mechanism (Li et al.,
2006; Kriegel et al., 2015; Nguyen et al., 2016). H+-PPases are
dependent on potassium ions (K+), thus K retention in the
cytoplasm under salinity may be critical for their function (Shabala
et al., 2014). H+-PPases have been shown more recently to be
involved with rapid mobilization of sugars and carbohydrates from
source to sink tissue (Pizzio et al., 2015;Gaxiola et al., 2016), and in
faster metabolism of sugars in cells (Ferjani et al., 2012). Both
processes will contribute to enhancing a cell’s energy budget.

4. Energy supply from photosynthesis

Photosynthesis supplies energy in the form of reduced C to fuel
growth and maintenance. In the majority of crop plants, salt stress
decreases photosynthesis by (1) reducing CO2 uptake through
stomata (Rawson, 1986; Delfine et al., 1999; James et al., 2002),
(2) causing ionic (Na+, K+, Cl�) imbalance within the chloroplasts,
resulting in poor efficiency of light and dark reactions (Delfine
et al., 1999; Percey et al., 2016; Bose et al., 2017), and (3) causing
oxidative damage to photosystems and membranes (Miller et al.,
2010; Bose et al., 2014). However, the extent of the decrease in
photosynthesis under salinity varies widely among crop species and
genotypes. In tolerant genotypes that are able to keep salt out of the
leaf, photosynthetic supply is not affected. In such cases, the
decrease in potential growth (compared to a nonsaline control)
must be directly proportional to, and a measure of, the energy cost
associated with tolerance.

5.How toestimate theenergy cost ofCO2fixationduring salt
stress

In a nonlimiting environment (e.g. absence of photorespiration),
three ATP and two NADPH are required per CO2 assimilated
(Wingler et al., 2000). This demand can bemet through absorption
of four photons each by PSII and PSI and subsequent linear
transport of four electrons from PSII to PSI (Kramer & Evans,
2011). Under salt stress there is an increase in energy demand for
CO2 assimilation due to an increase in photorespiration (Wingler
et al., 2000), protein turnover to repair and strengthen photosys-
tem components (e.g. energy cost to import a protein into
chloroplasts is c. 650 ATP; Miller et al., 2010; Shi & Theg, 2013),
and ion transport activity to maintain an optimum ionic environ-
ment within the chloroplasts (Bose et al., 2017). For example,
during photorespiration, each oxygenation reaction consumes 3.25

ATP and 2 NADPH (Wingler et al., 2000). Photorespiration can
occur at c. 25% the rate of net CO2 assimilation (25°C,
CO2 = 350 ppm; Walker et al., 2016), which will increase the
consumption of ATP and reducing equivalents per CO2 fixed from
3 ATP and 2 NADPH to 5.375 ATP and 3.5 NADPH (Box 2;
Notes S1).

In order to meet the high energy demand during salt stress,
chloroplasts could increase ATP production by altering the
H+ : ATP ratio required by the ATP synthase or engaging with
cyclic electron flow around PSI, using the water–water cycle, the
malate valve and plastoquinol oxidase (Kramer & Evans, 2011).
Among these mechanisms, enhanced cyclic electron flow around
PSI has been shown to increase ATP production during salt stress,
and the excess ATP generated has been suggested to fuel ion
transport mechanisms that prevent salt over-accumulation into the
chloroplasts (He et al., 2015). Under control conditions cyclic
electron flow amounts to 14%; whether it increases or not under
saline conditions is important to know.

III. Water and ion transport

Membranes are inherently high energy barriers for water and ion
transport. For energetics of salinity tolerance, any combined flux of
Na+ and Cl� across either plasma membrane or tonoplast and
resultant feedbacks for maintenance of electroneutrality and
negative membrane potential will entail energy costs to the cell.
Elevated fluxes of Cl� andNa+ under salinity stress will affect most
other transport due to changes inmembrane potential and pH (due
to proton-coupled transport). Forwater, control can be exerted and
much higher permeability obtained via the operation of aquaporins
(Maurel et al., 2015). Aquaporins are linked to cell energetics
(Chaumont & Tyerman, 2014), respond in a complex way to
salinity (Boursiac et al., 2005, 2008;McGaughey et al., 2018), and
some may allow ion permeation (Byrt et al., 2017; Kourghi et al.,
2017). Changes in water permeation will influence Na+ and Cl�

fluxes by virtue of their coupling by convection in the transpiration
stream and in radial transport across the root (Foster &Miklavcic,
2016, 2017).

In previous estimates of energy costs of ion fluxes in roots, the
paradigm used is the number of membranes crossed and the
number of protons consumed,which can then be converted toATP
demand based on stoichiometry of protons pumped per ATP
hydrolysed (usually taken as 1 : 1; Venema & Palmgren, 1995;
Kurimoto et al., 2004; Malagoli et al., 2008). Some isotope flux
calculations indicate that energy costs approach the ATP produced
by respiration (e.g. Malagoli et al., 2008 for rice), although
subsequent publications have questioned these results (Britto &
Kronzucker, 2015; Flam-Shepherd et al., 2018; Munns et al.
2020). These estimates are just for Na+ in isolation and ignore the
Cl� ion and feedback effects on other fluxes, such as loss of K+

(Cuin et al., 2008) andNO3
� (Teakle &Tyerman, 2010). Just the

stoichiometry of the proton pump could have a profound effect on
the energetics, and an H+ : ATP < 1 (e.g. when the pump is not
activated (Pedersen et al., 2018)) would reduce the energy
efficiency substantially; it is interesting that cytosolic K+ and
potentially Na+ can have an effect on this (Buch-Pedersen et al.,
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2006). The identification ofmolecular components of energetically
costly processes can be used to engineer plants for improved yield
(Amthor et al., 2019).

1. Ways of calculating energy of transport

Energy budgets When considering a plant that tolerates salinity,
we can ask many questions about how it manages in terms of energy
(Amthor, 2000; Bijlsma et al., 2000; Kooijman & Troost, 2007;
Munns & Gilliham, 2015). Ideally, we want to know the total
energy that is (1) captured, (2) expended on biochemical work
including growth, maintenance of metabolism and respiration, and
(3) invested in salt tolerance. Obtaining data on (1–3) is one thing;
interpreting these data, is another. For example, if the energy drain is
large, we may conclude that the responses come at high cost and,
because they require such a large portion of energy, must be
important. Yet, we could also argue that the responses are unlikely to
operate over the long term, because they are so costly. It is desirable to
include any component processes (Raven, 1985; Assmann&Zeiger,
1987; Bloom et al., 1992; Scheurwater et al., 2000), for example
synthesis of transport proteins, in the energy budget of the overall
process. However, in practice this is difficult to achieve, and it is
easier to consider a well-defined start and endpoint of the process.
We apply this rationale here to solutes in the first instance.

Energising solute movement The energy of a solute X, such as a
mineral nutrient ion, can be quantified by the electrochemical
potential of that solute (lX). The energy which is released by or
required for the movement of X from soil (S) into a leaf cell (L) is
DlX(SL) = lX(L)� lX(S), with DlX(SL) < 0 for a spontaneous
movement of X down a gradient in energy, and DlX(SL) > 0 for a
movement of X energetically-uphill (for calculations, see Fig. 4).

There are five options for how to approach such an energy
calculation.Option 1: we ignore all transport steps between S and L
and only consider the start and endpoint of lX. Option 2: we
consider all of the intermittent steps of transport. Option 3: we
render the second optionmore complete andmore complicated, by
including transport across intracellular membranes, particularly
the tonoplast. Option 4: we ignore the chemical nature of solute X
and link its movement to the energization of transport processes
across the plasma membrane through the plasma membrane H+-
ATPase (PM-H+-ATPase); we also ignore intermittent transport
steps. One H+ needs to be pumped at least for every solute moved
from S to L (at least one membrane crossing event) so we base our
energy calculation on the proton motive force (pmf; Palmgren,
2001; Fricke, 2017). Option 5: we include the energy which is
required to synthesize/maintain the biomolecules (e.g. membrane
transporters) and cellular processes (e.g. trafficking) that are
required to support the transport steps (Raven, 1985). This
approach is the most complete one, yet the difficulty is that all
processes in a cell are somehow interconnected and should be
considered. This is not possible to do as yet.

Option 1 provides the lowest estimate of energy for solute
movement from S to L. This applies particularly to the situation
under salt stress (high externalNa+ andCl�).We deal with a cation
and anion, each crossing plasma membranes with a significantly
negative (inside) membrane electrical potential (Cuin et al., 2003).
This should favour uptake ofNa+, even if it was as support of the co-
transport of another solute (e.g. K+) into cells (Carden et al., 2001,
2003; Cuin et al., 2003). By considering the chemical nature of
each solute we ‘save’ energy (Fricke, 2020 – see current feature
issue). Any intermediate transport between S and L causes
‘frictional’ loss of energy through heat. By omitting intermediate
transport steps while taking the chemical nature of solute

faeLtooRlioS

Option 1

Option 2

Option 3

Option 4

Option 5

(–lleC1–lleC n–1) Cell–nCell–2

H+

µXS

µXC1 µX µ2C XL

µXL

µX(n–1)

X

Fig. 4 Five possible ways to calculate the
energy associated with the movement of
solutes from a soil location to target location in
leaf. The options shown are not exhaustive.
For details, see text. Explanation of symbols
and abbreviations: red circle with X, solute
species X;lXS, chemical potential of soluteX in
compartment S (soil); other compartments are
leaf (L) or cells (C) at the start (C1) or end (Cn)
of transport path of solute; yellow symbol,
energy associated with providing cellular
infrastructure for transport, such as synthesis
and regulation of transporter protein; H+,
proton pumping through the plasma-
membrane-localized H+-ATPase; blue circular
lines, tonoplast depicting the large central
vacuole. The picture shows a 16-d-old barley
plant.
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X into account, we obtain a lowest-cost estimate for solute
accumulation.

Cost estimates If the cost estimate for solute movement exceeds
the energy available from C assimilation (day) or dark respiration
(night), we have to question our assumptions on energy budgets; if
the cost estimate is well within the energy available, it does not
mean that our energy budgets and assumptions are correct, but we
can conclude that this solute movement is theoretically possible.
We also can compare our lowest-cost estimate with the minimum
energy required to establish turgor pressure in cells, which results
from accumulation of solutes and associated water uptake. Turgor
pressure has many functions in cells (Beauzamy et al., 2014), and it
also presents some energy, as 1MPa of hydrostatic pressure

corresponds to 106 J m�3. In Box 3, calculations of energy
requirements are made for transport of Na+ and Cl� from a saline
soil solution to leaf vacuoles of a wheat plant that is accumulating
150 mM NaCl in order to osmotically adjust during growth. It is
based on Option-4 (Fig. 4) but including minimal (not all)
transport steps in the pathway and different possibilities that may
occur at these steps with respect to leaks (Fig. 5). These are
compared with rates of respiration in order to assess the proportion
of energy available that is used in transport. This exercise serves to
illustrate the magnitude of energy required as well as some of the
parameters that are required, particularly the leaks across mem-
branes in the pathway that can substantially increase the energy
required. These leaks are dealt with further in the following
sections.

Box 3 Calculation of minimum costs of NaCl accumulation in leaf and root vacuoles of a wheat plant growing in a saline soil of 150mM NaCl and
comparing effect of leaks

NaCl concentration in vacuole = 150mM
Growth rate = 0.1 d�1

Shoot : root ratio = 1.3 (Van Den Boogaard et al., 1996)
Leaf resp. = 7 lmol g�1

(FW) h
�1 Root resp. = 10 lmol g�1

(FW) h
�1

Plant C used in root resp. = 16%; Plant C used in leaf resp. = 13% (Van Den Boogaard et al., 1996)
H+/Na+ = 1, H+/Cl� = 2, H+/ATP = 1
ATP/O2 = 4.5
If leak present = 0.59 net flux

Pathway:One way to leaf via xylem through roots (no bypass flow, Fig. 5)
Na+ Root: 2 membranes, outside? symplast passive, symplast? xylem active

Leaf: 2 membranes, xylem? leaf symplast passive, symplast? vacuole active
Cl� Root: 2 membranes, outside? root symplast active, symplast? xylem passive

Leaf: 2 membranes: xylem? leaf symplast active, symplast? vacuole passive

Total costs for Na+ + Cl� transport

No leaks:

Leaf %ATP used = 7.1%

Root %ATP used (including for leaf supply) = 11.4%

% of root C used = 1.8%

% of leaf C used =0.96%

Total % plant C used = 2.76%

Leak (0.59 net flux) at one membrane (root and leaf)

Leaf %ATP used = 14.2%

Root %ATP used (including for leaf supply) = 22.8%

% of root C used = 3.7%

% of leaf C used = 1.9%

Total % plant C used = 5.6%

Leak (0.59 net flux) at two membranes (root and leaf)

Leaf %ATP used = 28.3%

Root %ATP used (including for leaf supply)= 45.6%

% of root C used = 7.4%

% of leaf C used = 3.8%

Total % plant C used = 11.2%

Note: These figures do not account for maintenance of membrane potential and do not include a small correction for respiration related to relative
growth rate. They also do not include a contribution from the H+-PPase at the tonoplast that would reduce costs. Cl� uptake from high salt soil may be
passive (Fig. 5).
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2. Energetics of Na+ transport: a conundrum

Current dogma suggests that acquisition of nutrient and toxic ions
by plant root cells is controlled mainly by influx and efflux
transporters residing in the plasma membranes. Bypass flow can
occur via the apoplast in rice depending on the development of
lateral roots and apoplastic barriers (Krishnamurthy et al., 2011).
This would be important to consider in energy calculations
considering that it avoids ‘expensive’ membrane steps, but control
on fluxes is presumably more limited. The difference between
unidirectional influx and efflux at the plasma membrane is the ‘net
flux’. In general, radiotracer experiments show that, as external ion
concentrations increase, so do influx and efflux, whereas net fluxes
remain low, indicating rapid cycling of ions (Britto &Kronzucker,
2006).

In the Rapid Transmembrane Sodium Cycling (RTSC) model
of Na+ transport in plants (Britto & Kronzucker, 2015), Na+

initially enters the root cells passively down its electrochemical
gradient due to a negative inward membrane potential (�80 to
�120 mV), with an assumed cytoplasmic Na+ concentration
([Na+]cyt) of between 10 and 30 mM (Munns & Tester, 2008),
significantly less than [Na+]ext under saline conditions. Genetic
variation for unidirectional influx exists, as salt-tolerant species
such as Suaeda maritima and Spergularia marina have lower
influxes than salt-sensitive species such as rice, wheat or Arabidopsis
(Cheeseman et al., 1985;Wang et al., 2007).Na+ then exits the cell,

at nearly the influx rate, via active transport across the plasma
membrane. Efflux measurements are notoriously difficult to
perform accurately via radiotracer techniques (Volkov, 2015).

Several transporters that could allow Na+ influx have been
proposed, some based only on physiological characteristics,
including voltage-independent nonselective cation channels (vi-
NSCCs; Demidchik &Maathuis, 2007), AtPIP2;1 (an aquaporin
as a candidate for vi-NSCCs; Byrt et al., 2017), AKT1 (K+

channel), LCT1 (low-affinity cation transporter), HKT-type (Na+

and/or K+ transporters), KUP/HAK/KT (K+ transporters) and
CCC (cation-Cl� cotransporter) dependent on location and co-
transported ion gradients (Kronzucker & Britto, 2011). However,
only SOS1 has been proposed as an apparent efflux transporter,
although it may participate in internal Na+ transport and perhaps
only mediates Na+ efflux from root tips where cell Na+ concen-
trations remain low, presumably to protect meristematic cells
(Kronzucker & Britto, 2011). This may be genotype- and Ca2+-
dependent (Wu et al., 2015). The vi-NSCCs could allow passive
efflux if the electrochemical gradients are appropriate (McGaughey
et al., 2018). Future progress in development of crop cultivars with
improved Na+ transport traits will benefit from resolving the
molecular identity of key Na+ transporters.

The energy requirements for sustaining influx and efflux of Na+

across the plasma membranes of root cells proposed by tracer
experiments would result in a very large energy burden if it involves
a Na+/H+ antiporter (e.g. SOS1), because for every Na+ effluxed
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enters the root and shoot symplast actively through a 1Cl� : 2H+ symporter (e.g. ZmNPF2.6), and is loaded towards the xylem by channel-mediated passive
transport (e.g. SLAH1/3heteromer).Na+enters the symplastpassivelyvia nonselective cation channels (NSCC), and is effluxedvia activeprotonexchange (e.g.
throughCHXor similarmechanism). (b) Under high salt, Cl�may enter the root symplast by passive transport, whereas passiveCl� efflux to the xylem (though
SLAH1/3heteromer) is downregulated at the transcriptional level.Na+ exclusion from the root xylem into the symplast is likely to bemediatedpassively byHKT
proteins. Apoplastic barriers in the root (not shown) are important to restrict by-pass flowof NaCl to the xylem. As ion exclusion is controlledmostly at the root
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across the plasmamembrane, oneH+must be extruded via the H+-
ATPase. Further, for every H+ extruded one ATP is hydrolyzed,
assuming optimal coupling to ATP, and the ratio of ATP produced
per O2 consumed is 4.5 (Boxes 1 and 2). This would mean that, at
most, 4.5 Na+ can be extruded for every O2 consumed in
respiration. Estimates for maximal whole root respiration (ex-
pressed as O2 consumption) are generally in the range of 10–
25 lmol g-1(FW) h

�1(Box 1).Consequently, sustainingmany of the
measured (or calculated) Na+ effluxes would require more ATP
than produced by the entire maximal respiration of the root (Britto
&Kronzucker, 2009). This problemwas described initially for Cl�

fluxes in relation to respiration in frog epithelia and has been
referred to as Ussing’s conundrum (Ussing, 1947, 1994; Britto &
Kronzucker, 2009). Ussing (1994) suggested that the flux of one
ion in the energetic ‘uphill’ direction may be coupled to the flux of
another ion in the ‘downhill’ direction. This suggests that
measurement of Na+ fluxes in isolation will be prone to artefact
as it does not consider the energetic effects of flux via other
transporters (e.g. Cl�; Colmenero-Flores et al., 2007).

Measurements of Na+ influx via radiotracer techniques assume
that the flux measurement is indeed trans-membrane, yet it is
possible that apoplastic binding or exchange of the tracer creates an
overestimate of the true Na+ influx (Britto & Kronzucker, 2015;
Munns et al., 2020). There are several techniques to measure Na+

fluxes, each with advantages and disadvantages (Volkov, 2015).
Gaining accurate measures of cytosolic ion concentrations is
challenging, because of the very small volume of cytosol, yet this
resolution is needed to model Na+ fluxes (Foster & Miklavcic,
2017). It also is clear that the contribution to Na+ uptake of
alternate pathways, such as ‘bypass flow’, and the influence of the
epidermis,multiple cortical layers and the root endodermal barriers
on root radial transport, must be better understood (Yeo et al.,
1987; Flam-Shepherd et al., 2018). Ultimately though, determi-
nation of the molecular identity of the transporters mediating Na+

transport in plant roots will be required to dissect the system and
provide targets for efforts to develop cultivars with superior Na+

transport traits.

Leakage ofNa+ across the tonoplast Salinity tolerance of tissues is
critically dependent on efficient vacuolar Na+ sequestration.
Although the mechanisms of Na+ transport into the vacuole are
still a matter of debate (Bassil et al., 2011), tonoplast-based NHX
Na+/H+ exchangers are considered likely candidates (Bassil et al.,
2019). However, active removal of Na+ from cytosol to vacuole is
only one component of vacuolar sequestration. Another often-
neglected component isNa+ retention in vacuoles. This retention is
based on an efficient control of Na+-permeable vacuolar channels
that mediate the back-leak of Na+ into the cytosol and, if not
regulated tightly, may result in a significant energy cost.

Two major types of Na+-permeable channels are present in the
tonoplast (Isayenkov et al., 2010). The slow-activating (SV)
channels are permeable to both mono- and divalent cations, and
fast-activating (FV) channels that are permeable to monovalent
cations only (Pottosin & Dobrovinskaya, 2018). Although the
molecular identity of FV channels remains unknown, SV channels
are encoded by a TPC1 (‘two-pore channel 10) protein (Hedrich

et al., 2018). Both channels are ubiquitous and abundant in patch
clamp experiments on vacuoles (Pottosin & Schnknecht, 2007;
Demidchik et al., 2018). Being nonselective, these channels do not
discriminate between Na+ and other cations. As SV channels allow
the release ofK+ from the vacuole, they are essential formaintaining
cytoplasmic K+ homeostasis (Hedrich et al., 2018). Their relative
expression determines the vacuolar Ca2+ storage capacity (Gilliham
et al., 2011). Also, TPC1 channels play a key role in generating
Ca2+ waves in long-distance signalling in plants, including those
under saline conditions (Choi et al., 2014). These channels may
need to be open for normal cell metabolism and signalling, but
salinity tolerance may require them to be closed most of the time.
Model calculations (Shabala et al., 2020) show that if each cell has
only one open SV channel at a given time, the back-leak
may approach 100% of the influx. For in planta conditions (at
resting cytosolicCa2+ concentrations) themeasuredSVcurrents are
c. 10 pA per vacuole (Perez et al., 2008), which equates to
approximately five open SV channels. This could mean that all
available energy may be wasted in cycling of Na+ in and out of the
vacuole. Halophytes have developed an ability to reduce the
number of open SV channels by several fold when grown under
saline conditions (Bonales-Alatorre et al., 2013), by an unknown
mechanism. This needs to be addressed in future studies to enable
plant breeders to target reduced Na+ cycling across the tonoplast.

3. Transport of Na+ and Cl� from soil to leaf

The cell-mediated pathway for Na+ and Cl� transport from soil to
shoot (i.e. neglecting bypass flow in the root) involves at least three
plasma membrane components: (1) entry at the root symplast, (2)
unloading towards the xylem apoplast, (3) re-entry at the shoot
symplast; and finally crossing the tonoplast membrane for vacuolar
sequestration (Fig. 4). For Na+, our present understanding of
electrochemical gradients and transportmechanisms for the plasma
membrane favours only a single energy-requiring step: efflux to the
xylem apoplast, notwithstanding the secondary effects on other
ions caused by passive Na+ entry, such as depolarization of the
membrane potential and requirement for charge balance (Fig. 5a).
For root-to-shoot Cl� transport, a minimum of two energy-
requiring plasma membrane transport steps are required, at least
under the normal paradigm that Cl� entry is via proton co-
transport, although it is possible for Cl� to enter the symplasm
passively at high external Cl� concentrations depending on the
membrane potential (Teakle & Tyerman, 2010). These steps
include uptake at the root symplast and re-uptake at the shoot
symplast (Fig. 5a). In reality, it is possible that a multitude of Na+

and Cl� pathways exist; for example, Na+ storage may occur in
xylem parenchyma cells as a consequence of HKT mediated
transport (Munns et al., 2012).

Entry into the root symplast Passive influx of Na+ from the soil
solution into the cytosol of root epidermal and cortical cells
(Cheeseman, 1982; Fig. 5a) is likely achieved through NSCC
(Tyerman et al., 1997; Davenport & Tester, 2000; Demidchik &
Tester, 2002). Sub-sets of plasmamembranewater channels such as
the Arabidopsis PIP2;1 and PIP2;2 aquaporins, which are
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abundant in root epidermal cell plasma membranes and are
permeable to Na+, have been proposed as candidates for NSCCs
(Byrt et al., 2017; Kourghi et al., 2017); these aquaporins quali-
tatively and semi-quantitatively match the NSCC properties as
measured in isolated root protoplasts by patch-clamp (McGaughey
et al., 2018).

Chloride can enter the plant root symplast through secondary
active transport either coupled to H+ uptake or, at high salinity,
passively due to an initial membrane depolarization (Skerrett &
Tyerman, 1994; Lorenzen et al., 2004; Saleh & Plieth, 2013;
Fig. 5b). Cl� : H+ symport is likely to occur across only one
membrane, which may be plasma membranes of root hairs,
epidermal cells or cortical cells (Fig. 5a). Symport of 1Cl� : 2H+

has been identified in plant root hairs (Felle, 1994), and the
expression of ZmNPF2.6 – which encodes a protein with
1Cl� : 2H+ activity – was detected in the plasma membranes of
maize root epidermal and cortical cells (Wen et al., 2017).

Once in the symplast, radialNa+ andCl�movement towards the
xylemmay occur through plasmodesmata, with nomembrane steps
required. However, cycling in and out of cells and vacuoles along
the way may occur.

Xylem loading and retrieval Sodium transport to the xylem is an
energy-requiring step, most likely coupled to H+ antiport, and
could occur via a Na+–H+ exchange with the acidic apoplast.
Numerous candidate proteins might catalyze this Na+ transport
step in plants, for example SOS1 and CHXs (Shi et al., 2003; Zhu
et al., 2019; Fig. 5a).

Chloride entry to the xylem apoplast is channel-mediated by
SLAH1 and SLAH3 (Cubero-Font et al., 2016). Expression of
SLAH1 and SLAH3 is downregulated by salt and abscisic acid
(ABA), and a slah1mutant has reduced Cl� in shoots under NaCl
treatment compared to wild-type (Cubero-Font et al., 2016; Qiu
et al., 2017). Although no energy per se is required for this step
(Fig. 5a,b), energy will be required for maintenance of membrane
potential, because high efflux of Cl�will depolarize themembrane.
Aluminium-activated malate transporters (ALMT) that can func-
tion as Cl� channels also may release anions to the xylem (B. Li
et al., 2017).

Retrieval of Na+ from the xylem is mediated by HKT1-type
transporters (Davenport et al., 2007; Munns et al., 2012; Xu et al.,
2019). Some HKT proteins have been shown to function as Na+/
K+ symporters at micromolar Na+ concentrations. However, at
millimolar Na+ concentrations, as would be expected in the xylem
apoplast under salt stress, HKT proteins display channel-like Na+

uniporter activity (Munns et al., 2012; Henderson et al., 2018).
Thus, xylem retrieval of Na+ is likely to be passive under salt stress
(Fig. 5b). The Na+ retrieved by HKT1 is effluxed from the upper
part of the root (Davenport et al., 2005).

Re-entry to the shoot symplast andmovement into themesophyll
cells The pathway for Na+ entering the shoot symplast from the
xylem apoplast and then moving into mesophyll cells could be via
NSCCs, perhaps Na+-permeable aquaporins in the plasma mem-
brane of bundle sheath cells (Shatil-Cohen et al., 2011; Sade et al.,
2014; Fig. 5a,b). Chloride re-enters the shoot symplast from the

xylem apoplast at the plasma membrane of bundle sheath cells via
secondary active transport. The maize 1Cl� : 2H+ symporter
ZmNPF2.6 shows preferential expression in bundle sheath cells
(Wen et al., 2017), suggesting that a NPF protein family member
catalyzes this activeCl� influx in leaves.Once in the shoot symplast,
Cl� can move into mesophyll cells through plasmodesmata where
it can accumulate to high concentrations, yet accumulates,
preferentially, to much higher concentrations in the epidermis in
moderately salt-tolerant barley (Dietz et al., 1992; Fricke et al.,
1994, 1996).

Although passive Na+ and Cl� transport is considered to be
energy-free, the electrochemical gradient that drives passive ion flux
is generated by an energy-dependentmechanism (theH+-ATPase).
Hence changes in the functioning of the H+-ATPase under salinity
would influence both passive and active Na+ and Cl� transport.
Osmotic stress, including from NaCl, increases the coupling ratio
(that is more proton efflux per ATP hydrolysed) of the H+-ATPase
(Kerkeb et al., 2002; Janicka-Russak et al., 2013). This would
decrease the energy requirement for proton-mediated secondary
active transport without increasing the inward gradient for passive
Na+ entry.

4. Is transmembrane Na+ cycling a key determinant of cell
energy use?

Excessive cycling of Na+ and that of other ions in root cells of
glycophytes is one of the most puzzling observations in plant
transport physiology. Even if part of the tracer Na+ uptake (and
release in washout studies) reflected exchange with binding sites in
the root apoplast (see above discussion in Energetics of Na+

transport: a conundrum), there is evidence that a considerable
fraction of Na+ is indeed taken up by root cortical cells and is
subsequently released again, either at the same cell or further up
the root after the Na+ is withdrawn from the xylem (Davenport
et al., 2005). The energetic costs of this cycling, if confirmed, calls
for an investigation into the benefit the plant could potentially
draw from such a process. It remains an intellectual challenge to
understand why transport proteins allowing Na+ entry into the
root symplast exist in the plasma membrane, when salt exclusion
is an important strategy to avoid saline stress in glycophytes.
Earlier studies showed that salt-starved roots (‘low salt roots’)
readily take up Na+ to generate turgor when there is essentially no
other choice (Pitman et al., 1968), and obviously transport
proteins are needed for this contingency. Because cells can express
and alter their transporters to suit the conditions, the existence of
a transport pathway for Na+ entry does not mean that it is always
operating. A contender for the NSCC, the aquaporin PIP2;1, is
rapidly removed from the plasma membrane upon a salinity stress
(Boursiac et al., 2008), perhaps because of its ability to transport
Na+. However, this unavoidably compromises water transport
and potentially K+ transport, because PIP2;1 also can transport
K+ which is strongly linked in a broader sense to generation of
turgor in plant cells .

It has been proposed thatNa+ influx via aquaporinsmay provide
the driving force for simultaneous water uptake, via the same
transport protein, against the water potential gradient (which may
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favour water efflux instead). This would require a close coupling of
water and solute transport, allowing a transfer of free energy
between the fluxes, which can be tested experimentally. Nonos-
motic water transport may play a role in the generation of root
pressure, repair of embolized xylem vessels and control of cell
elongation (Fricke, 2015; Wegner, 2015, 2017). This mechanism
implies large circular fluxes of the solute(s) driving the water
transport, because solutes permeating together with a fixed number
of water molecules need to be re-translocated back immediately at
the expense of metabolic energy to maintain the (electro)chemical
gradient. This implies that the seemingly futile cycling of Na+ and
K+ has a physiological function rather than being just a waste of
energy. Evidence in support of this hypothesis has been provided
previously (Wegner, 2017). It should be noted that the osmotic and
nonosmoticwater uptakemechanisms proposed byWegner (2017)
are mutually exclusive, at least at the cellular level, because water
fluxes across the plasma membrane are facilitated by a high activity
of aquaporins, which would short-circuit nonosmotic water
uptake, rendering it unfeasible from an energetic point of view
(Wegner, 2015, 2017; Fricke, 2017). These considerations may
help to understand the complex regulation of aquaporin activity
under salt stress (McGaughey et al., 2018).

IV. Root anatomy and transport pathways

Pathways through root systems impact on the energy needed for
plant salt tolerance. Plants must exclude nearly all the salt in the soil
solution while taking up water, and maintain a low net rate of Na+

and Cl� uptake (Munns et al., 2020). Here we assess three aspects
that affect the ability of roots to exclude salt while taking up water,
without exhausting the energy budget of the plant.

1. Root systems and the anatomies of root types

The most important aspect of roots compared to shoots is that the
stele tissues (xylem, phloem, pericycle and parenchyma cells) are
internal, surrounded by a cortex (the innermost layer of which is
known as the endodermis) and an epidermis (Fig. 6a–d). Epider-
mal cells may differentiate into root hairs (Fig. 6e). Shoots have
stele tissues distributed throughout parenchyma cells. Evidence has
emerged that the root cortex must do the heavy lifting of excluding
Na+ from shoots (Munns et al., 2020). Within this context, the
large differences between cortex and stele anatomies are intriguing
(Varney et al., 1991; Watt et al., 2008, 2009). Large variation
depends on root type (axile versus branch types), age and soil
(Fig. 6a–d).

The single root model underlies our current framework for
salinity tolerancemechanisms (e.g. Fig. 5). This is generally an axile
root from the embryo (seminal; Fig. 6a) or stem (nodal; Fig. 6d);
branch roots are rarely considered (e.g. Faiyue et al., 2012). The
single root model greatly underestimates pathways for salts and
water from soil to shoot, based on distances and cell sizes. In wheat,
within 10 d of germination, the plant develops a system of different
root types with branch roots (termed lateral or fine roots) that have
emerged from an axile root (Fig. 6a or d). The complexity of the
system increases with time: by the time of flowering, wheat roots

below the topsoil can be 90% branch roots with the fine structure
and anatomy shown in Fig. 6(c) (Watt et al., 2008).

Soil conditions, including high salinity, strongly influence
allocation between axile and branch roots (Rich & Watt, 2013).
Durum wheat root systems were studied in a gradient of
salinity, to mimic distribution under natural soil conditions
(Rahnama et al., 2011). Seminal axile root lengths in saline
gradients were c. 25% less than those of the control, whereas
branch length was c. 500% greater. The consequences of shifts
to different root types could be large in terms of anatomy: in
the saline gradient, c. 26% of total root length shifted to finer
branch roots (e.g. Fig. 6b,c), and the branch roots emerged
much closer to the axile tip (c. 3 cm in saline conditions
compared with c. 20 cm in nonsaline).

Salinity inhibits cell division in the primary roots of species
including wheat and barley (Rahnama et al. 2011; Shelden et al.,
2013). Branch root initiation and extension was uninhibited by
external salt (Rahnama et al. 2011).Decreasing primary root length
and allocating energy to the initiation of lateral roots may be linked
to adaptation to salinity, a mechanismwhich also was seen by Zolla
et al. (2010) in Arabidopsis. Branch roots arise from pericycle cells
and water for elongation may come from the phloem (Boyer et al.,
2010). Salinity can promote differentiation of underlying xylem
tissues in cotton (Reinhardt & Rost, 1995) and aging of roots in
tomato (Snapp & Shennan, 1992). Taken together, these studies
suggest that anatomical pathways across a root system may change
upon exposure to saline soil compared to nonsaline conditions
(Fig. 6f).

2. Importance of root system anatomical differences:
estimating ATP costs of cortical cell layers

What could be the energy consequences of changing root anatomy
on Na+ transport costs? Here we compare scenarios of roots with
single or double cortical cell layers to predict if root types may have
different energy costs for Na+, K+ and Cl� transport. An
Arabidopsis model (Foster & Miklavcic, 2017) was applied to
the simplest branch roots of wheat (Fig. 6c).Wheat fine roots share
similarities with Arabidopsis roots (image in Fig. 6c inset), except
that the wheat root tested had two cortical cell layers, whereas the
Arabidopsis root had one.

Themodelling predicts that a higher cortical cell layer number is
associated with increased energy requirements for ion transport in
salt-stressed roots (Fig. 6g). A modelled wheat root with only one
cortical layer would use 20% less energy (per unit of root length) for
ion transport than a root with two cortical cell layers. The plasma
membrane surface area of the cells outside the endodermal
apoplastic barrier correlate reasonably with the energy cost
(Fig. 6h). The number of cells outside the outermost apoplastic
barrier correlate with the energy cost better than the total root
perimeter (or surface area).

The model used here presents one consequence of root system
architecture differences under saline conditions (Fig. 6f). Anatom-
ical changes to the root system to cope with salinity may lower the
energy cost of ionmovements across membranes that require ATP.
The importance of living cell number to root energetics has been
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shownbyLynch and colleagues usingmodelling andmeasurements
on plants exposed to low nutrient supply (e.g. Schneider et al.,
2017).Herewe simulated fewer and smaller living cortical cells, not

cortical cell senescence. Future studies are needed to test salinity
stress tolerance implications of fewer cells with greater apoplasmic
spaces.
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Fig. 6 Changes in anatomy, root system and
root cells that may be important in the
energetics of salinity tolerance. (a–d) Cross-
sections of wheat roots, all at the same
magnification. Inset of (c), Arabidopsis
primary root cross-section, shown at same
magnification as wheat second-order branch
root (bar, 50 lm; from Sotta & Fujiwara,
2017). (e) Speculation about importance of
root hairs as an epidermal barrier to Na+

movement into the root. Left. Root hair of
nodal root in (d) outlined to indicate surface
area with soil. Right, enlargement of hair tip
with hypothesized, drawn transport of vesicles
(yellow) delivering Na+ to the outside of the
cells (bar, 25 lm). Speculation and drawing
based on the root hairs of sorghum,which can
transport sorgoleone to the surface and to the
soil in vesicles (see the subsection ‘Cell
specializations at the epidermis including hair
growth and functions’). (f) Schematic view of
influence of salinity on a root system. Events:
(1) shortening of primary root; (2) increased
first-order branch root length; (3) branch root
and xylem maturity closer to the tip; (4)
increased rate of root aging. See text for
references to original research for these
events. (g) Modelled effects of either one or
two cortical cell layers, and presence of an
epidermal barrier, on energy costs of
transmembrane transport. (h) Positive
relationship between plasma membrane
surface area outside an apoplastic barrier and
energy cost. The Foster & Miklavcic (2017)
model root geometrywas adapted to simulate
wheat rootswithoneor twocortical layers. For
all simulations, the externalmediumcontained
100mM NaCl, and a hydraulic pressure of
�0.3MPa was assumed at the top boundary
of the root. The remaining simulation
conditions were as described in Foster &
Miklavcic (2017) for the nonuniform transport
scenario. C, cortex; PM, plasma membrane.
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3. Cell specializations at the epidermis including hair growth
and functions

The energy costs of the cell-to-cell pathway (plasmamembrane and
tonoplast transport ofNa+, K+ andCl�) could be high, especially in
a nodal axile root with 11 cortical cell layers and a seminal axile root
with six layers (cf. Fig. 6d with a). This prompts consideration of
other possible mechanisms by which roots could prevent Na+ from
reaching shoots.

The plasma membrane of epidermal cells contains Na+ trans-
porters such as HvHKT1;1 in barley (Han et al., 2018), and SOS1
in Arabidopsis (Shi et al., 2002). This suggests that epidermal cells
sense and have a role in excluding salt from the roots. Confocal
microscopy was used to monitor the distribution of Na+ using an
indicator dye, and fluorescence was higher in the vacuole of the salt-
tolerant variety, a finding that was supported by a much lower
cytosolic to vacuole ratio of Na+ (Cuin et al., 2011; Wu et al.,
2018a,b). We estimated the effect of an apoplastic barrier in the
epidermis on costs of ion transport in salt-stressed roots (Fig. 6g).
An apoplastic epidermal barrier reduced the energy costs by 18%
and 10% for the two and one cortical cell layer roots, respectively.
These results indicate that an epidermal barrier could lead to
larger energy savings in roots with more cortical layers.

Root hairs (Fig. 6e) have a larger surface-to-volume ratio than
cortical cells andmay capturemost of the salt convectedwithwater,
retaining more salt from the soil solution than underlying cortical
cells. Root hairs facilitate water uptake from soil at high
transpiration rates (Carminati et al., 2017). Root hairs were c.
50% shorter in response to salinity in barley, which is typical of
studies conducted with seedlings in hydroponics without soil (see
Shabala et al., 2003). Root hair cells can develop specializations
(Tyerman et al., 1989), similar to modified trichomes on the aerial
tissue of halophytes, known as epidermal bladder cells (EBC). EBC
cells accumulate Na+ in excess of that measured in mesophyll cells
(Adams et al., 1998; Barkla et al., 2002). Interestingly, root hairs of
the grass sorghum sequester compounds toxic to the cytoplasm in
vacuoles and release them to soil by vesicular transport (Weston
et al., 2012). We speculate that root hairs may package salt into
vesicles that are moved to the surface and extruded to the soil
(Fig. 6e). Future studies of root hair responses and mechanisms of
sequestering salt should be tested in soil and on different root types
(Nestler et al., 2016).

4. Membrane dynamics avoid transmembrane crossings

Traditionally, the cellular view is static, with cells requiring
mechanisms to keep salt out of the cell or sequester into the vacuole.
Improved imaging techniques in recent years show constant, highly
dynamic construction and de-construction of membranes in
contact with the apoplast (walls). The vacuole appears as a flexible
bubble, widening and narrowing the space between the tonoplast
and plasma membrane (L€ofke et al., 2015). This provides the
opportunity for direct contact of the two membranes and the
possibility of a direct ‘shunt’ for ions to enter the vacuole either
without crossing through the cytosol or crossing via a cytosolic
micro domain with different conditions (Flowers et al., 2018).

Such membrane contact sites have been identified between
other organelles within a distance of 10–30 nm (Wu et al.,
2018a,b). Evidence for direct channelling of ions between the
endoplasmic reticulum (ER) and plasma membrane, and
between ER and mitochondria (Prinz, 2014), opens the
possibility for Na+ ions to be transported in this manner.
Once in the organellar lumen, the ions can be trafficked to the
vacuole from the ER or pass through the Golgi and trans-Golgi
network (TGN) to pre-vacuolar compartments and finally to
the vacuole (Honscher et al., 2014). These routes exclude the
energetically costly cytosolic import and export steps. The ER of
two cells is usually connected through the plasmodesmata
(Thomas et al., 2008), providing an avenue for ion movement
between cells in the lumen without transport across membranes,
followed by sequestration in the vacuole. We speculate that the
energy costs of this movement could be lower than crossing
vacuolar and plasma membranes (four crossings per cell).

In summary, root systems display multiple and flexible options
to adjust the energetics of salinity tolerance using anatomy and cell
differentiations. An additional option to Fig. 4 is multiple
pathways with different modes of transport (and energetics) in
space and time within a plant.

V. Where to from here?

Which of the many transport processes consume the most energy,
and at what time and where in the plant? These questions are
difficult to answer by experimental study alone. However,
achieving a detailed, quantitative understanding of this complex
whole-plant salt stress response is possible if physiological studies
are accompanied by computational/biophysical modelling (Foster
& Miklavcic, 2017). Biophysical models could be adapted to
incorporate energy fluxes and used to identify transporters thatmay
be engineered to achieve improved energy efficiency in roots. The
effect of endodermal barriers on ion uptake and energy costs of ion
transport through the root has been quantified bymodels (Foster&
Miklavcic, 2016, 2017). Models of salt and water transport in a
single plant cell (Foster & Miklavcic, 2015), and ONGUARD

software which models guard cell transport, homeostasis and
metabolism (Chen et al., 2012; Hills et al., 2012; Wang et al.,
2017), could be adapted to calculate the energetic costs of salt
tolerance. For example, analogous biophysical modelling would
not only inform us of the transport mechanisms with the highest
energy demands, but also allow us to identify transport steps as
targets to minimize these energy costs while still maintaining
conditions compatible with salt tolerance. In addition, biophysical
modelling has the potential to answer questions on the quantity of
ATP available. For example, existingmodels of transport in isolated
plant cells combined with models of ATP production in animal
cells (e.g. Bertram et al., 2006) could be adapted to quantitatively
model ATP production in plant mitochondria. Modelling also can
be used to investigate currently unproven hypotheses, such as the
possibility of water co-transport with ions such as Na+ (Wegner,
2017). Although existing models of ion and water transport in
plants assume that water transport is passive, they could be adapted
to explore the possibility of active water transport.
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A potentially important component to include in models of
energy use is the signalling that occurs in response to salt stress,
including involvement of transporters, that leads to changes in gene
expression, growth and remodelling of root systems (Julkowska &
Testerink, 2015), which ultimately affects the energetics. Another
aspect not dealt with here is the costs of altering the proteome
because protein synthesis can consume a large amount of energy; in
leaves it could consume 25% of the ATP produced by respiration
(L. Li et al., 2017). Collaboration between theoreticians and
experimentalists is needed to answer the questions raised here. This
may address many of the gaps in our knowledge of salt tolerance
mechanisms in plants. Accurate estimation of energy costs
associated with salinity tolerance may provide a new approach to
long-standing problems – by the coordinated measurements of
transport activities and root respiration on the same tissue under the
same conditions. This, together with identification of the molec-
ular components in crop species that canbemodified to increase the
amount of energy available for harvestable yield (Amthor et al.,
2019),may provide a new approach to increase yield on saline soils.
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