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Abstract: Sun-Induced fluorescence at 760 nm (F760) is increasingly being used to predict gross
primary production (GPP) through light use efficiency (LUE) modeling, even though the mechanistic
processes that link the two are not well understood. We analyzed the effect of nitrogen (N) and
phosphorous (P) availability on the processes that link GPP and F760 in a Mediterranean grassland
manipulated with nutrient addition. To do so, we used a combination of process-based modeling
with Soil-Canopy Observation of Photosynthesis and Energy (SCOPE), and statistical analyses such as
path modeling. With this study, we uncover the mechanisms that link the fertilization-driven changes
in canopy nitrogen concentration (N%) to the observed changes in F760 and GPP. N addition changed
plant community structure and increased canopy chlorophyll content, which jointly led to changes
in photosynthetic active radiation (APAR), ultimately affecting both GPP and F760. Changes in the
abundance of graminoids, (%graminoids) driven by N addition led to changes in structural properties
of the canopy such as leaf angle distribution, that ultimately influenced observed F760 by controlling
the escape probability of F760 (Fesc). In particular, we found a change in GPP–F760 relationship
between the first and the second year of the experiment that was largely driven by the effect of plant
type composition on Fesc, whose best predictor is %graminoids. The P addition led to a statistically
significant increase on light use efficiency of fluorescence emission (LUEf), in particular in plots also
with N addition, consistent with leaf level studies. The N addition induced changes in the biophysical
properties of the canopy that led to a trade-off between surface temperature (Ts), which decreased,
and F760 at leaf scale (F760leaf,fw), which increased. We found that Ts is an important predictor of the
light use efficiency of photosynthesis, indicating the importance of Ts in LUE modeling approaches to
predict GPP.
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1. Introduction

An accurate estimation of gross primary production (GPP) by terrestrial ecosystems is crucial
to understanding the variability of the global carbon (C) cycle [1]. One of the most common ways
to estimate GPP relies on the use of light use efficiency (LUE) models (Equation (1)). In the LUE
framework [2], estimates of GPP are based on three variables: (i) the fraction of photosynthetically
active radiation (fAPAR) absorbed by the vegetation; (ii) the actual light use efficiency of photosynthesis
(LUEp), i.e., the conversion efficiency of absorbed radiation to fixed carbon; and (iii) incident
photosynthetically active radiation (PAR).

GPP = fAPAR × PAR × LUEp (1)

The development and retrieval methods in passive sensing of sun-induced chlorophyll fluorescence
(SIF), i.e., the radiation emitted by plants upon sun exposure, opens new possibilities to estimate GPP
using remotely sensed data [3–5]. In the last decade, several studies have shown that sun-induced
fluorescence at 760 nm retrieved from top-of-canopy (TOC) measurements (F760) can track changes
in APAR and LUEp, and therefore can be directly linked to GPP from leaves [6], ecosystem, [7–10] to
regional and global scale [3,11–13].

Although the mechanistic link between GPP and F760 is not completely understood, recent advances
in the field have contributed to explain the process under various conditions [14,15]. The reason F760

and GPP correlate is that both processes start with the absorption of light by a chlorophyll molecule.
Once the photon is captured by the antenna and reaches the reaction center of the photosystem II,
the chlorophyll molecule can return to the ground state through photochemical quenching (PQ),
through the non-photochemical quenching of the excited state (NPQ), as the photon is dissipated
non-radiatively as heat [16], or it can be re-emitted as a photon of fluorescence [17]. Fluorescence
emission cannot be physiologically regulated, and its quantum yield depends on the efficiency of PQ
and NPQ [17]. The mechanisms regulating the partitioning of absorbed photosynthetically active
radiation (APAR) into the different pathways is therefore fundamental to grasping the GPP–F760

connection [18,19].
F760 is usually described with a similar approach to the Monteith’s LUE framework, as shown in

Equation (2):
F760 = fAPAR × PAR × LUEf × Fesc (2)

where F760 is equal to the product of fAPAR, PAR, the light use efficiency of fluorescence emission at
760 nm (LUEf), and the escape probability of chlorophyll fluorescence at 760 nm (Fesc) [20].

Equations (1) and (2) can be combined into Equation (3), which shows that the only variables that
control the relationship between GPP and F760 are LUEp, LUEf and Fesc:

GPP = F760 ×
LUEp

LUEf × Fesc
(3)

Multiple factors can influence the different terms in Equation (3), and eventually GPP–F760

relationship [5,8]. Among these, the ones that require more attention because they are not fully
understood are: (i) leaf nutrient content, in particular nitrogen (N) and phosphorous (P); and (ii) canopy
structural parameters such as leaf area index (LAI) and leaf angle distribution (LAD), which in
grasslands are often related to the community structure of the canopy [8,21]. Quantifying the effect of
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nutrients and canopy structure on the partitioning of absorbed radiation and on LUEp, LUEf, and Fesc
is the first step to shed light on GPP and F760 changes under different nutrient availability.

Canopy N concentration (hereafter N%, N mass per gram of leaves of the whole canopy) is often
related to the nutritional condition where the plant grows. Nitrogen is a fundamental constituent
of leaves that is typically associated with higher LAI, and positively correlated with the amount of
chlorophyll a and b (Cab) [22]. Higher LAI and Cab increase APAR, but at the same time should
reduce Fesc due to higher absorption and scattering of emitted fluorescence [14]. Nitrogen is also
positively related to the amount of ribulose-l,5-bisphosphate carboxylase and oxygenase (Rubisco)
protein content [23,24], and thus the maximum carboxylation rates (Vcmax), which is a key determinant
of the maximum photosynthetic rates, and therefore GPP [25]. Therefore, nitrogen can influence the
partitioning of APAR into PQ, NPQ, and fluorescence emission [15], but different studies, mainly
at leaf level, showed contrasting results [14,26]. Moreover, there is a lack of studies that investigate
at canopy scale how LUEp, LUEf, and Fesc are modulated under varying nitrogen availability [14].
Canopy phosphorous concentration (hereafter P%) is another critical element for photosynthesis,
being involved in the synthesis of Adenosine triphosphate (ATP) [27]. Leaf-level studies with active
fluorescence measurements showed that P% deficient plants have lower chlorophyll fluorescence
emission efficiency [28]. However, we are not aware of canopy level studies showing the effect of P%
on F760 and LUEf.

Canopy structural variables, such as LAI and LAD, influence the radiative transfer of incoming
radiance and emitted SIF within the canopy [19]. LAD can vary on daily and seasonal bases and is
strongly influenced by species composition and plant functional forms [29]. LAI and LAD can have
a major influence on the sun/shaded leaf ratio through the canopy. This ratio has the potential to
directly influence the level of NPQ in the canopy [30] (higher in sunlit, lower in shaded leaves) and
therefore could indirectly influence the LUEf. Canopy structure, through absorption and scattering of
the fluorescence emitted by the leaves, has a significant influence on observed F760, determining Fesc,
the probability of F760 to escape the canopy [31]. Absorption by chlorophyll is higher in the red region,
whereas multiple scattering in the far-red region increases the probability of absorption by soil and
woody elements. It has been shown recently with modeling studies that TOC observed F760 (canopy
scale) is only a fraction of the F760 emitted at leaf scale (F760leaf) [32]. The decoupling between F760leaf

and F760, mainly mediated by Fesc, can have implications for the GPP–F760 relationships. Recently,
new methods to estimate Fesc are being developed, potentially allowing to downscaling the F760 signal
at the leaf level [31,33]. Finally, other variables such as soil moisture or surface temperature (Ts) also
have the potential to impact the GPP–F760 relationship. Heat and water stress have been proven to
affect photorespiration, but not the PQ in Mediterranean species [34], thus decoupling photochemistry
from F760 [18]. Ts, in particular, contains information on both the activation of NPQ mechanisms and
other processes related to stomatal closure and sensible heat losses [35]. Therefore, surface temperature
might also help to better characterize the seasonal variations of LUEp and therefore to better predict
GPP, in particular under stress conditions [35,36]. Figure 1 illustrates a theoretical framework that
sums up current knowledge and our hypothesis regarding the interlinks between GPP and F760 and
their relationship with canopy structural parameters and leaf traits of vegetation. In Figure 1, solid
colored lines represent the energy partitioning at both leaf and canopy level and dotted lines represent
the hypothesized relationships.

All factors illustrated in Figure 1 play a role in determining GPP, F760, and their relationship.
However, the strength of these influences, and whether leaf nutrient content and canopy structure
influence the GPP–F760 relationship directly (through LUEp, LUEf and Fesc) or occur indirectly
(mediated by APAR or by a third variable), is not clear. In this study, we aimed to fill the gap
in understanding on how nutrients and canopy structure control LUEp, LUEf and Fesc, and we
investigated the mechanisms that drive GPP and F760 in a nutrient manipulation experiment. We asked
the following questions:

How do the treatments (N, NP, and P) influence LUEp, LUEf, and Fesc?
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What are the drivers of the light use efficiency equations terms (LUEp, LUEf, Fesc) that relate GPP
and F760?

What are the direct and indirect effects of nutrients (in particular N%) and canopy structure on
GPP and F760?

To answer these questions, we used GPP, F760, and additional data on vegetation properties
from a nutrient manipulation experiment in Mediterranean grassland with addition of N, P and N
and P together (NP). The aim of the fertilization was to induce a changed in both plant nutrient
content and structural traits (through changes in LAD mediated by plant community and LAI) within
the ecosystem.

1 
 

 

Figure 1. Energy partitioning at the leaf and canopy level representing the processes involved in the
photosynthetic light use efficiency model (GPP = APAR x LUEp) and fluorescence light use efficiency
model (F760 = APAR *LUEf * Fesc) are represented with solid arrows. Dotted arrows represent the
hypothesized relationship between leaf traits, canopy structure and the various processes related to
the allocation of energy and transfer of SIF within the canopy. Photosynthetic active radiation (PAR);
absorbed (by vegetation) photosynthetic active radiation (APAR); PAR absorbed by chlorophyll a and
b molecules (APARgreen), represented as the green bar in the equations on both sides of the figure;
gross primary production (GPP); sun-induced fluorescence emitted by all leaves at 760 nm (F760leaf);
sun-induced fluorescence at 760 nm observed at top of canopy (F760); nitrogen concentration on a
mass basis (N%); chlorophyll a and b on a mass basis (Cab); leaf mass per area (LMA); maximum
carboxylation rate (Vcmax); leaf area index (LAI); leaf angle distribution (LAD).

2. Materials and Methods

2.1. Experimental Site

The study was conducted in a Mediterranean savannah located in Spain (39◦56′24.68′′N,
5◦45′50.27′′W; Majadas de Tietar, Caceres) characterized by a continental Mediterranean climate,
with temperate winters and warm dry summers: mean annual temperature of 16.7 ◦C and annual
precipitation of ~650 mm distributed mainly between September and May [37].

The herbaceous layer is dominated by annual C3 species of the three main functional plant forms,
namely grasses, forbs and legumes, which are green and active from October to end of May [38].
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The site is managed as a typical wood pasture (Iberian Dehesa) with low intensity grazing by cows
(~0.3 cows ha−1) [37].

2.2. Nutrient Manipulation Experiment, Gross Primary Production and Ancillary Data

A nutrient manipulation experiment focused on the herbaceous layer was established in early
spring 2014 and 2015. The set-up consisted of four 20 m × 20 m width randomized blocks. Within
each block we established four plots (9 m × 9 m) with 2 m of buffer between treatments (Figure S1).
We established four treatments (for details, see [37]): control (C) with no fertilization, N addition with
one application of 100 kg N ha−1 as potassium nitrate (KNO3) and ammonium nitrate (NH4NO3), P
addition with 50 kg P ha−1 as monopotassium phosphate (KH2PO4), and nitrogen–phosphorous (NP)
addition, with 100 kg N ha−1 and 50 kg P ha−1 as NH4NO3 and KH2PO4, respectively.

Carbon Dioxide (CO2) fluxes between the herbaceous layer and the atmosphere were measured
in 32 collars of 60 cm × 60 cm for each field campaign around noon local solar time (Table 1). At each
collar, GPP (µmol CO2m−2s−1) was estimated as the difference between net ecosystem CO2 exchange
(NEE) measured with transparent chambers and ecosystem respiration (Reco) measured with opaque
chambers. Measures CO2 and water vapor mole fractions (W) were collected at 1 Hz by means
of an infrared gas analyzer (IRGA LI-840, Lincoln, NE, USA) connected to the chambers. The flux
calculations and corrections were conducted using the self-developed R package “RespChamberProc”
(https://github.com/bgctw/RespChamberProc). Air temperature (Ta,◦C) was measured with a thermistor
probe (Campbell Scientific, Logan, UT, USA). Soil moisture content (%) at 5 cm depth was determined
with an impedance soil moisture probe (Theta Probe ML2x, Delta-T Devices, Cambridge, UK). Vapor
pressure deficit (VPD, hPa) was computed using relative humidity and Ta. Incident PAR (µmol m−2 s−1)
was measured with a quantum sensor (Li-190, Li-Cor, Lincoln, NE, USA) mounted outside of the
chamber. Surface temperature (Ts, ◦C) was measured with infrared thermometer installed in the
chambers (Tc, IRTS-P, Apogee, UT, USA).

Table 1. Summary of the main meteorological data collected in each field campaign.

Date Campaign Fertilization PAR
µmol s−1 m−2

VPD
hPa

Ta
◦C

SWC
%

SZA
◦

20-03-2014 1 No 1604.82± 11.33 12.59 ± 0.38 24.2 ± 0.2 19.01 ± 0.27 41.86 ± 0.23
15-04-2014 2 Yes 1842.92± 32.63 15.12 ± 0.59 30.09 ± 0.55 22.58 ± 0.58 31.83 ± 0.85
7-05-2014 3 Yes 1342.1 ± 93.73 22.4 ± 1.98 32.1 ± 0.91 4.78 ± 0.09 25.69 ± 0.6
27-05-2014 4 Yes 1417.15± 104.4 15.83 ± 1.2 27.89 ± 0.47 6.57 ± 0.09 21.4 ± 0.82
04-03-2015 5 Yes 1411.29± 18.05 7.01 ± 0.36 23.9 ± 0.48 21.49 ± 1.91 49.66 ± 0.49
23-04-2015 6 Yes 1842.64± 25.23 16.38 ± 0.84 29.98 ± 0.37 6.7 ± 0.11 31.21 ± 0.98
27-05-2015 7 Yes 1955.21± 35.25 23.2 ± 1.56 36.33 ± 0.73 1.14 ± 0.02 24.26 ± 1.87

PAR is the photosynthetic active radiation, VPD is the Vapor Pressure Deficit, Ta represents the mean air temperature,
SWC is the soil water content and SZA is the solar zenith angle. Medians and one standard error are shown for
each variable.

The meteorological conditions for each field campaign are reported in Table 1. Destructive
sampling of the vegetation in four parcels (0.25 m × 0.25 m each) within each plot was conducted
to estimate LAI and green to dry biomass ratio [37]. The abundance of each functional group such
as fraction of graminoids (%graminoids), forbs (%forbs), and legumes (%legumes) was determined.
The Shannon biodiversity index (H) among plant functional types was determined as in [39]. N%
and P% in plant tissues were determined as described in [37]. Carbon isotopic signature (δ13C) for
the vegetation was determined from dried samples using a DeltaPlus isotope ratio mass spectrometer
(Thermo Fisher, Bremen, Germany) coupled via a ConFlowIII open-split to an elemental analyzer
(Carlo Erba 1100 CE analyzer; Thermo Fisher Scientific, Rodano, Italy). δ13C was calculated using the
measured ratio between 13C and 12C in the sample and in a calibrated in-house-standard (Acetanilide:
−30.06 ± 0.05%�) as in [40,41] (Equation (4) and Figure S2):

https://github.com/bgctw/RespChamberProc
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δ13C =

(
13Rsample − 13Rstandard

)
13Rstandard

(4)

where 13Rsample and 13Rstandard are 13C/12C ratio of the sample and of the standard, respectively.

2.3. Transpiration Estimates

Two independent estimates of transpiration (expresses as latent heat fluxes, LE) were obtained:
one from upscaling the δ13C measurements (LEISO) and the other from the runs of SCOPE optimized
at the experimental site [42] to obtain the LE of canopy component (LEcanopy,inv).

LEISO was calculated from δ13C, GPP and VPD according to Equation (5) [43], and then the units
were converted from mmolH20 m−2 s-1 to W m−2.

LEISO =

(
GPP

WUEi

)
×VPDmean (5)

where VPDmean is the mean daytime VPD computed over the period between the beginning of the
growing season and the plant sampling dates for the isotope measurements, and intrinsic water use
efficiency (WUEi) was calculated as following:

WUEi =
Ca
1.6

(
b′ − ∆lin

b′ − a

)
(6)

where Ca is the CO2 mole fraction in ambient air, b’ is the mean fractionation during carboxylation and
internal transfer (−27%�), a is the fractionation during diffusion through stomata (4.4%�) and ∆lin is the
community weighted mean of δ13C.

Figure S3a,b displays LEISO and LEcanopy,inv, respectively, and Figure S3c shows the scatterplot of
the two estimates. The two independent estimates have a good relationship, with Pearson correlation
coefficient (r) of 0.701 and slope of 0.809. In Figure S3a there are no significant differences among
treatments for each campaign in 2014 or 2015 in LEISO. According to the ANOVA test, the LEcanopy,inv

shows significant differences in Campaign 2 in 2014 (F3,11 = 11.4, p = 0.01) and the Tukey HSD post
hoc-test identifies the P treatment as significantly different from the C treatment (p = 0.012). In addition,
in 2015, in Campaign 7, there is a significant difference (F3,10 = 5.47, p = 0.017) and the Tukey post-hoc
identifies a significant decrease for N and P treatments in comparison with the control (p = 0.016,
p = 0.042, respectively).

2.4. Field Spectroscopy, Retrieval of Sun-Induced Fluorescence and Biophysical Properties

TOC spectral radiances were collected under clear-sky conditions immediately before flux
measurements at each collar [8,37]. The sampling strategy was designed to minimize the differences
in solar zenith angle (SZA) between measurements, confirmed by the ANOVA test, which reports
non-significant differences in SZA between treatments in each campaign (p = 0.43, p = 0.41, p = 0.33,
p = 0.65, p = 0.99, p = 0.99, and p = 0.57 for Campaigns 1–7, respectively). The ranges of SZA for the
spectral measurements are reported in Table 1. Two portable spectrometers (HR4000, OceanOptics,
USA) were used to estimate chlorophyll fluorescence at the O2A band (i.e., F760,) and reflectance in
the spectral range 400–1000 nm. The measurements protocol was the following: We first measured
the incident solar irradiance by nadir observations of a leveled calibrated standard reflectance panel
(Spectralon, LabSphere, USA). We then acquired five measurements of TOC spectral radiances from
nadir at 110 cm above the targeted area using bare fiber optics of 25◦ of field of view (about 43 cm
diameter at the ground, Figure S4). F760 was estimated by exploiting the spectral fitting method [6].
The spectral interval used for F760 was set to 759.00–767.76 nm. Albedo400–900 was calculated from TOC
spectral radiances as shown in Equation (7), assuming a Lambertian behavior of the reflected radiance.
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Albedo400−900 =

∫ 900
400 Lr × π∫ 900

400 E
(7)

where Lr is the reflected radiance and E400–900 is the Irradiance. fAPAR was estimated in three different
ways: (i) fAPARSCOPE was simulated by the process based SCOPE model [44]. (ii) fAPARRENDVI was
based on the established relationship between measured fAPAR and the red edge NDVI (RENDVI)
found in maize, soybean and grasslands [45] (Equation (8)).

f APARRENDVI = 1.61×RENDVI − 0.03 (8)

where RENDVI is calculated as shown in Equation (9):

RENDVI =
(RNIR − RRE)

(RNIR + RRE)
(9)

where RNIR and RRE are reflectance factors in spectral bands 770–800 nm and 700–710 nm, respectively.
(iii) APARLi&Moreau1996 was based on subtracting the integral (between 400 and 700 nm) of the incoming
PAR (PARinc) from the integral (between 400 and 700 nm) of the reflected PAR (PARrefl) measured by
the spectrometers [7,46] and then multiplying by the proportion of canopy absorption (RAPAR) [47]
(Equation (10)).

APARLi&Moreau1996 = (PARinc − PARrefl) ×RAPAR (10)

where RAPAR is calculated as:

RAPAR = 0.105− 0.323×NDVI + 1.468×NDVI (11)

The fAPAR formulations are quite consistent with each other (Figure S5), and therefore hereafter
we use fAPARRENDVI.

2.5. SCOPE Model Simulations

Forward and inverse simulations with the SCOPE model were conducted to assess the robustness
of fAPAR, Fesc, and LEISO derived from field observations.

The forward runs model was parameterized using the structural and functional traits derived
from the field sampling as well as meteorological and chamber data. Vapor pressure deficit (VPD, hPa),
air pressure (p, hPa), short wave downwelling radiation (Rin, W m−2), long wave downwelling
radiation (Rli, W m−2), air temperature (Ta, ◦C), wind speed (u, m s−1), soil moisture content (SMC, %),
leaf area index (LAI m2 m−2), canopy height (h, m), chlorophyll a and b content (Cab, µg cm−2),
dry matter content (Cdm, g cm−2), maximum carboxylation rate (Vcmax, µmol m−2 s−1) and the
parameters to characterize the leaf angle distribution (LAD), respectively, LIDFa and LIDFb, were used
to parameterize the model run. SCOPE meteorological drivers were measured along with chamber
measurements for the majority; in the case they were not available with the chambers, such as Rin, Rli,
p, VPD, wind speed, atmospheric CO2 concentration (Ca, ppm), and atmospheric O2 concentration
(Oa, ppm), they were derived by linearly interpolating two consecutive measurements around the
chambers measurement time collected at the nearby eddy covariance flux tower at 10 min of temporal
resolution. Canopy height was estimated in the field with a meter stick in five positions within
the measurement collar. Additional parameters such as leaf equivalent water thickness, leaf width,
Ball–Berry stomatal conductance parameter and dark respiration rate at 25 ◦C as fraction of Vcmax
were obtained from the literature for C3 grasses [8]. The SZA at the time of the collection of the spectral
measurements was used as model input. Soil reflectance spectra were collected in a dedicated field
campaign in April 2015 and used for all the runs. Leaf angle distribution was parameterized in SCOPE
as in [8] by assuming grasses to be erectophile, forbs spherical and legumes planophiles.

The accuracy of F760 and GPP simulated with SCOPE (F760FW and GPPFW, respectively) was
evaluated by root mean-squared error (RMSE), slope, intercept, and the determination coefficient (R2)
of the linear regression between observed and modeled data (Figure S6).

Inverse runs of SCOPE against reflectance, F760, GPP and thermal radiance, as described in [42],
were carried out to obtain LEcanopy,inv and Fesc (Fescinv).
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2.6. Calculation of the Light Use Efficiency of Photosynthesis (LUEp), Light use Efficiency of Fluorescence
Emission (LUEf) and Escape Probability of F760 (Fesc)

For each plot and campaign, LUEp, LUEf and Fesc were computed. LUEp was calculated as in
Equation (12):

LUEp =
GPP

APAR
(12)

where GPP is the one measured with the chambers and APAR was calculated as in Equation (13):

APAR = f APARRENDVI × PAR (13)

LUEf was computed as in Equation (14):

LUE f =
F760

APARradiance × Fesc f w
(14)

where F760 is the TOC fluorescence retrieved and Fescfw is the escape probability calculated from forward
runs of SCOPE and APARradiance (mW m−2 nm−1 sr−1) is calculated from APAR (µmol m−2 s−1) as
shown in Equation (15).

APARradiance =
APAR

(4.6 × wl × π )
× 1000 (15)

where 4.6 represent the conversion factor from µmol m−2 s−1 to W m-2 for radiation from 400 to
700 nm [48] and wl is the wavelength interval (300 nm), and π is used to transform irradiance
to radiance.

We computed Fesc and F760leaf in three alternative ways to evaluate their consistency:
(i) Combination of forward runs of SCOPE and measured F760 (Fescfw) as shown in Equation (16):

Fesc f w =
F760 × π

F760lea f ,FW
(16)

where F760leaf,FW and F760leaf,fw are fluorescence emitted by all leaves at 760 nm as calculated by the
forward SCOPE run (hemispherical and directional, respectively).

(ii) An empirical estimate of Fesc (Fescemp) computed according to Equation (17) [33]:

Fescemp =
NIRv

f APARRENDVI
. (17)

NIRV was calculated as in Equation (18), where NIRT is the reflectance at 858 nm.

NIRV = NDVI ×NIRT (18)

Then, empirical Fleaf (F760leaf,emp) was calculated as in Equation (19).

F760lea f ,emp =
F760

Fescemp
(19)

(iii) An estimation of Fesc using data from a SCOPE inversion (Fescinv) (Equation (20)).
Fescinv was obtained from inversion of SCOPE against reflectance, F760, GPP and thermal radiance,

as described in [42] and was calculated as in Equation (20).

Fescinv =
F760INV/π
F760lea,INV

(20)

where F760INV and F760leaf,INV are the top-of canopy sun-induced fluorescence at 760 nm and sun-induced
fluorescence emitted by all leaves at 760 nm as obtained from SCOPE inversion.
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Finally, F760leaf,inv was calculated as in Equation (21).

F760lea f ,inv =
F760

Fescinv
(21)

The three alternative Fesc and Fleaf computed (F760leaf,fw, F760leaf,emp, and F760leaf,inv) were compared
against each other (Figure S7). The analysis presented below were conducted with all the different
estimates of Fesc to evaluate the effect on the results presented. Hereafter, we report only the results
obtained with Fescfw and F760leaf,fw.

2.7. Statistical Analysis

Our statistical analysis consisted of three parts. First, to answer Research Question (i), group
differences among treatments were analyzed with Analysis of Variance (ANOVA) and differences
among groups were tested with Tukey Honest Significant differences (HSD) post-hoc test. In the
case of violation of the assumption of homoscedasticity of residuals, the ANOVA with the Welch’s
correction [49] and post-hoc analysis with Games–Howell test [50] were used. In addition, an analysis
of Covariance (ANCOVA) was used to test if the relationship between GPP and F760 (canopy scale)
and F760leaf,fw (leaf level) is changing with the treatment and in time.

Second, we addressed Research Question (ii) with the relative importance analysis with “lmg”
(Lindeman, Merenda and Gold), a popular approach for quantifying the individual contributions of
multiple regressors, assuming linear relationships, as implemented in the R package “relaimpo” [51].
Standard errors were computed by means of bootstrapping (n = 1000 realizations). Independent
variables (i.e., predictors) used in the relative importance analysis are N%, %graminoids, %legumes,
Ts, LAI, Shannon Biodiversity Index (H) and soil moisture. Additional relative importance analyses
were carried out with the surface-air temperature (Ts - Ta) in place of Ts (Figure S8), as Ts −Ta could be
a good proxy for water stress [52].

Third, to answer Research Question (iii), a path analysis was used. The path analysis assumes
linearity among variables and the effects are considered additive and not multiplicative. The structural
model is based on expected relationships hypothesized and its model structure is shown in Figure S9.
The user specifies the model structure, and the method outputs estimates of the path coefficients.
The analysis was conducted with the R package “lavaan” [53]. The individual links among variables
were evaluated by means of the p-value and standardized coefficient (β). It should be noted that in the
analysis we used Ts in place of the reflectance based indexes because: (i) Ts contains information on
NPQ [54]; and (ii) Ts is independent from the measurements used to estimate F760.

Chi-squared (χ2), comparative fit index (CFI), standardized root mean square of residual (SRMR)
and Root Mean Square Error of Approximation (RMSEA) were computed to evaluate the overall
accuracy of the models. The standard error of β and of the model fit indices were obtained from
bootstrapping the dataset (n =100 realizations). Additionally, to assess the stability of the individual
paths across treatments and the robustness of the original model, we made intervention on the dataset
by removing from the dataset one treatment and evaluating the impact on the individual β coefficients
(Figures S10–S13).

3. Results

3.1. Description of Fertilization Effects on Fluxes, Optical Data, and Vegetation Characteristics

The effect of the fertilization treatment on GPP, LUEp, F760, LUEf and Fescfw is shown in Figure 2.
All these variables show a wide variation in time (campaign) and with treatment. GPP is higher in the
N and NP treatments in 2014 and more substantially in 2015 during Campaigns 5 (F3,18= 15.6, p < 0.01)
and 6 (F3,26= 13.1, p < 0.01). LUEp in the N treatment is significantly different from the C treatment
only during Campaign 6 (F3,26= 2.7, p < 0.05).

F760 shows a significant increase during Campaign 2 for the NP treatment (F3,11= 5.9, p < 0.05)
and during Campaigns 5 (for N and NP) (F3,18 = 13.2, p < 0.01) and 6 (for N,NP, and P) (F3,26 = 19.7,
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p < 0.01) of 2015. LUEf is significantly higher for the NP treatment during Campaign 4 of 2014
(F3,12 = 4.59, p < 0.05), while Fesc shows significant increases for the N and NP treatment of Campaigns
5 (F3,18= 11.32, p < 0.05 and p < 0.05, respectively ) and 6 (F3,26 = 15.91, p < 0.05 and p < 0.01, respectively)
of 2015. Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 23 
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Figure 2. Bar graphs representing differences among treatments (control treatment, C; nitrogen
treatment, N; nitrogen and phosphorus treatment, NP; and control treatment, C) of Gross Primary
Production (GPP) in 2014 (a) and 2015 (b); light use efficiency of photosynthesis (LUEp) in 2014 (c)
and 2015 (d); Fluorescence at 760 nm (F760) in 2014 (e) and 2015 (f); light use efficiency of fluorescence
emission at 760 nm (LUEf) in 2014 (g) and 2015 (h); and fraction of F760 that escapes the canopy (Fescfw)
in 2014 (i) and 2015 (l). Data are divided among campaigns. Bar graphs represent means and error bars
represent 1 standard error. Group differences in (a–h) were analyzed with ANOVA test and individual
differences among groups were evaluated with Tukey HSD post hoc test. Group differences in (i,l)
were analyzed with ANOVA with the Welch correction and individual differences among groups were
evaluated with the Games–Howell post hoc test. “*” refers to a significant difference from the control
treatment with p value < 0.05 and “**” refers to a significant difference from the control treatment with
p value < 0.01.
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Figure 3 displays changes in N%, APAR, Albedo400–900, Ts and plant community (%graminoids)
with the fertilization treatment. N% shows a quite consistent increase in the N and NP treatment in 2014
in comparison with the C treatment for Campaigns 2 (F3,11 = 26.8, p < 0.01), 3 (F3,12= 14.2, p < 0.01) and
4 (F3,11= 14.2, p < 0.01) and in 2015 in Campaigns 5 (F3,18 = 56.2, p < 0.01) and 6 (F3,26 = 18.5, p < 0.01).
APAR presents significant differences for the N and NP treatment of Campaign 2 (F3,11 = 24.98, p < 0.01)
of 2014 and Campaigns 5 and 6 of 2015 (F3,18 = 7.37, p < 0.01 and F3,26= 38.5, p < 0.01, respectively).
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Figure 3. Bar graph representing differences among treatments (control treatment, C; nitrogen treatment,
N; nitrogen and phosphorus treatment, NP; and control treatment, C) of Canopy nitrogen content (N%)
in 2014 (a) and 2015 (b); absorbed photosynthetic active radiation (APAR) in 2014 (c) and 2015 (d);
Albedo400–900 in 2014 (e) and 2015 (f); Surface Temperature (Ts) in 2014 (g) and 2015 (h); and graminoids
relative abundance (%graminoids) in 2014 (i) and 2015 (l). Data are divided among campaigns. Bar
graphs represent means and error bars represent 1 standard error. Group differences in (e–h) were
analyzed with ANOVA test and individual differences among groups were evaluated with Tukey HSD
post hoc test. Group differences in (a,b,i,l) were analyzed with ANOVA with the Welch correction and
individual differences among groups were evaluated with the Games–Howell post hoc test. “*” refers
to a significant difference from the control treatment with p value < 0.05 and “**” refers to a significant
difference from the control treatment with p value < 0.01.
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All treatments show a significant increase in Albedo400–900 during Campaigns 5 (F3,18= 29.3,
p < 0.01) and 6 (F3,26= 13.6, p < 0.01) in 2015, but no significant treatment-induced changes in
Albedo400–900 are observed in 2014. Ts shows significant differences in Campaign 6 for the N, NP and
P treatments (F3,26= 13.5, p < 0.01). LEISO follows the phenological cycle with lower values in 2015
(Figure S3a). There are differences in LEISO among treatments (such as the increase during Campaign 2
of 2014 for N and NP), but these appeared not significant according to the ANOVA. LEISO estimates
are consistent also with independent simulations with SCOPE (Figure S3c).

Instead, significant differences in %graminoids among treatments occur mainly in 2015 in
Campaigns 5 (F3,18= 9.4, p < 0.01) and 6 (F3,26= 13.3, p < 0.01) with lower %graminoids in N and
NP treatments. %Forbs also present significant differences in 2015 by increasing in the N treatment
(in comparison with the C treatment) (F3,18= 8.8, p < 0.01) and in Campaign 6 in the N and NP treatment
(F3,26= 11.5, p < 0.01) (Figure S14d). %Legumes is marginal and does not change significantly among
treatments (Figure S14e,f).

3.2. Temporal Variability of GPP–F760 and GPP–F760leaf.fw Relationship among Treatments

The results of the ANCOVA show that, in 2014, the intercept of the C treatment is significantly
different from the other treatments for both F760 (as shown in previous studies [8,37] and F760leaf,fw

(p < 0.05 and p < 0.05, respectively) (Figure 4 and Table S1).Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 23 
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3.3. Factors controlling the parameters of light use efficiency equation (LUEp, LUEf and Fesc) 
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highest explained variance (R2=0.67 ± 0.054), followed by Fesc (R2 = 0.62 ± 0.06) and LUEf (R2 = 0.46 ± 

Figure 4. Scatterplot of observed fluorescence at 760 nm from top of canopy (F760) vs. Gross Primary
Production (GPP) for 2014 (a) and for 2015 (c); and directional fluorescence emitted by all leaves at
760 nm calculated from forward SCOPE runs (F760leaf,fw) vs. GPP for 2014 (b) and for 2015 (d). Data are
divided for the four treatments; control (C), nitrogen addition (N), nitrogen and phosphorus addition
(NP) and phosphorus addition (P). P values of the interaction treatment with independent variable
(in comparison with the control treatment, C) from an analysis of covariance (ANCOVA) are reported
in the bottom-right of each panel. Colored lines represent the regression from the ordinary least
square regression.
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In 2015, the intercept is different for the C treatment for both F760 and F760leaf,fw (p < 0.01 for
both) and for the NP treatment with p < 0.05 for both F760 and F760leaf,fw. In 2015, for the N treatment,
there is no significant interaction between F760 and treatment (Figure 4c), but there is a significant
interaction between F760leaf,fw and the N treatment (p < 0.05) (Figure 4d), with significant differences of
the GPP–F760leaf,fw relationship. There is no significant effect of the year on the GPP–F760 relationship.
For each treatment, p = 0.706, p = 0.323, p = 0.927 and p = 0.992 for N, P and NP and C, respectively.
Instead, when substituting F760 with F760leaf,fw, the effect of the year is not significant in the treatments
C and P (p = 0.659 and p=0.742), but is significant for the NP treatment with p < 0.05, and barely not
significant for the N treatment with p = 0.057.

3.3. Factors Controlling the Parameters of Light Use Efficiency Equation (LUEp, LUEf and Fesc)

The relative importance analysis with “lmg” method shows that LUEp is the variable with
the highest explained variance (R2 = 0.67 ± 0.054), followed by Fesc (R2 = 0.62 ± 0.06) and LUEf

(R2 = 0.46 + 0.06) (Figure 5). The variable that explains the most variance of LUEp is Ts (R2 = 0.36 ± 0.06),
followed by LAI (R2 = 0.13 ± 0.05), Canopy N% (R2 = 0.06 ± 0.04) and H (R2 = 0.05 ± 0.04).
The main predictor of LUEf is %graminoids (R2 = 0.15 ± 0.07), followed by Ts (R2 = 0.13 ± 0.08), LAI
(R2 = 0.07 ± 0.05), and Canopy N% (R2 = 0.05 ± 0.03). The main predictor of Fesc is clearly %graminoids
(R2 = 0.52 ± 0.03), followed by soil moisture (R2 = 0.03 ± 0.04) and Canopy N% (R2 = 0.02 ± 0.02),
the latter contributing only marginally.

The results of the relative importance analysis for GPP, F760, and F760leaf.fw show the importance
of LAI that controls the seasonality of canopy structure and APAR (Figure S15).

When substituting as predictor Ts with Ts - Ta, we found slightly better results than Ts alone
when predicting GPP, F760, and F760leaf,fw (Figure S8). However, including Ts - Ta does not improve the
overall prediction, as the contribution to R2 of LAI decreases, but the total R2 remains similar. When
predicting LUEp, LUEf, and Fesc, Ts - Ta is a worse predictor of LUEp than Ts (R2 = 0.28 ± 0.05).
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Figure 5. Relative importance analysis with “lmg”(Lindeman, Merenda and Gold) method of Light use
efficiency of photosynthesis (LUEp), Light use efficiency of fluorescence emission at 760 nm (LUEf)
and escape probability of sun-induced fluorescence at 760 nm obtained from forward runs of SCOPE
(Fescfw). Predictors included in the analysis are: soil moisture, Shannon biodiversity index (H), canopy
nitrogen content (N%), surface temperature (Ts), relative abundance of legumes (%legumes), relative
abundance of graminoids (%graminoids) and leaf area index (LAI). Error bars (1 SE) are calculated
through bootstrapping (n = 1000), but are not shown in the figure. They are however reported in the
result section.
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3.4. Mechanisms behind the Treatment Effect on GPP and F760 at Leaf and Canopy Scale

Figure 6 shows the output of the path analysis. The results of the final models are displayed as
graphs. The overall model fit is evaluated: χ2 = 129 ± 23, CFI = 0.901 ± 0.03, SRMR = 0.07 ± 0.02 and
RMSEA= 0.19 ± 0.02. CFI and SRMR show excellent fit according to Hu & Bentler [55]. In contrast,
the RMSEA is higher than expected. RMSEA is part of the parsimony-adjusted fit indexes, which
reward low model complexity. Our goal is however to represent a holistic model that includes all
the relevant processes and we do not use the path analysis a posteriori as a mean of model selection.
Additionally, according to [56], “RMSEA over-rejects true models for ‘small’ n (n < 250)”, which might
be the cause of our RMSEA value, as our sample size is 133.
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Figure 6. Path analysis displays the role of canopy nitrogen content (Canopy N) and relative graminoids
abundance (%graminoids) on the energy partitioning at the leaf and canopy level. Photosynthetic active
radiation (PAR); absorbed by vegetation photosynthetic active radiation (APAR); fluorescence emission
by all leaves at 760 nm calculated by forward runs of SCOPE (F760leaf,fw); gross primary production
(GPP); surface temperature (Ts); and observed fluorescence at 760 nm (F760). The strength of the
relationship among variables is expressed by the standardized coefficient (β) of the path analysis. Each
standardized coefficient has a standard error obtained from bootstrapping (n = 100 times). The width
of the arrows is proportional to their standardized coefficient (β). Colored lines (both solid or dotted)
represent direct relationships between variables, whereas gray double-headed arrows represent the
covariance among variables. Solid and dotted lines indicate significant (p < 0.05) and non-significant
relationships, respectively. The width of the arrows is proportional to their standardized coefficient
(β). The different colors are introduced to increase readability of the standardized path coefficients.
The fit by the overall model is measured by means of Chi-squared (χ2), comparative fit index (CFI) and
standardized root mean square of residual (SRMR).
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Figure 6 shows the clear effect of the %graminoids on F760. The N and NP treatments significantly
affect N% withβ of 0.44± 0.07 and 0.47± 0.08, respectively. N and NP treatments also affect significantly
%graminoids with β of −0.27 ± 0.1 and −0.21 ± 0.09, respectively. N% has a significant relationship
with four variables: APAR, Ts, GPP, and F760leaf,fw with β of 0.37 ± 0.05, −0.37 ± 0.06, 0.12 ± 0.03
and 0.10 ± 0.04, respectively. %graminoids significantly affects APAR and F760 with β of 0.27 ± 0.09
and −0.17 ± 0.02, respectively. The path between %graminoids and Ts is however not significant.
APAR significantly influences GPP, F760leaf,fw and Ts with β of 0.87 ± 0.02, 0.77 ± 0.03 and −0.25 ± 0.06.
Finally, F760leaf,fw and Ts have a significant covariance with β of −0.17 ± 0.04. F760leaf,fw and GPP have
a significant covariance with β of 0.07 ± 0.02 and so do GPP and Ts with β of −0.18 ± 0.03.

Alternative models using different estimates of F760leaf were tested and we found that the same
paths are selected as significant, and the magnitude of the β coefficients are almost unchanged
(Figure S16). This suggests that the path analysis model is not strongly dependent by the estimation
type of the fluorescence emission. The results of the intervention removing treatments show that
the vast majority of the paths remain constant and significant. The only difference can be seen when
removing the NP treatment (Figure S11), where the links between canopy N and GPP and canopy N
and F760leaf,fw become non-significant.

4. Discussion

In the following section, we first discuss the treatment effects (N, NP, and P) on the LUE equation
terms, second the predictors of LUEp, LUEf and Fescfw, and third how the nutrient fertilization affects
GPP and F760 through changes in N%, plant community and canopy structure.

4.1. Treatment Effect on LUEp, LUEf, Fescfw

The relative stability among treatments of LUEp, which is significantly different for the N
treatment only in Campaign 6 and shows an increase of NP in Campaign 5 in 2015, suggests that our
Mediterranean grasslands is quite constrained in its photosynthetic efficiency, and that any nutrient
induced changes in GPP (Figure 2) are mostly modulated by changes in structural parameters such
as fAPAR.

The increase in LUEf in the NP treatment compared to N alone suggests a co-limitation of nitrogen
and phosphorus on fluorescence efficiency. The role of P on the functional modulation of fluorescence
efficiency at canopy scale has not yet been shown in the literature. However, a series of studies at leaf
level showed a positive relationship between photochemical quenching and P in leaves as well as an
effect of P on active fluorescence measurements [57]; these support the differences in LUEf observed
in our study. Our study suggests that P, and in particular the co-limitation N and P, might have an
important role on determining F760 but is not conclusive on the mechanism, and more research is
needed to understand the mechanism and also to support the current efforts to include P in terrestrial
biosphere and photosynthesis models [27]. The fact that the magnitude of increase of Fescfw is very
similar in N and NP treatments support the idea that N addition is the main factor regulating canopy
structure (Fescfw and APAR). Other works show that N addition strongly impacts canopy structural
parameters such as LAI and plant height in a short-grass prairie [58], although there are no studies
focused on the effect of N and NP on Fesc.

Overall, the ecosystem responded in the first year to the fertilization, mainly in a functional way
(higher LUEf), whereas, in the second year of fertilization, we observed structurally mediated increase
in GPP and F760 (through higher APAR and Fescfw) (Figures 2l and 3d). The structurally mediated
changes in 2015, driven by a decrease in abundance of erectophiles plants as the graminoids in the
N containing treatments, caused a change in slope in the GPP–F760 relationship for the N and NP
treatment (Figure 4c), which is almost significantly different from the C for F760, but significantly
different from the C for F760leaf,fw in the NP treatment (Figure 4d).

The N treatment has proven to affect plant functioning and canopy structure (APAR and Fescfw),
while P has only a marginal role on the LUEf. For this reason, in the next paragraphs, more attention is
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paid to the role of N%, together with meteorology and canopy structure, as driver of in LUEp, LUEf

and Fescfw, as well as GPP and F760.

4.2. Predictors of the Terms of the Light Use Efficiency Equation

Understanding the causes of variability of the parameters of LUE equations (LUEp, LUEf,
and Fescfw is fundamental to exploit remote sensing information such as F760 for modeling
spatio-temporal patterns of GPP [20]. We show that Ts is the main predictor of LUEp, and together
with %graminoids is one of the two main predictors of LUEf. Ts is a good indicator of water stress
and strongly related to phenology and green fraction of vegetation [59,60], which ultimately relates to
temporal variability of LUEp. However, the fact that variables normalized by APAR such as LUEp and
LUEf are driven by Ts indicates that it is not only a seasonal effect but rather physiological. In fact,
Ts contains also information related to the activation of the xanthophyll cycle responsible for NPQ
processes (Figure S17) that ultimately is related to LUEp and LUEf [18]. Finally, many variables that
have the potential to influence LUEp, such as photorespiration and chlororespiration, are influenced
by leaf temperature [61], potentially explaining why Ts is being selected. Our results reinforce the idea
that Ts should be used as additional input of LUE models aimed at the prediction of GPP [62].

The %graminoids is by far the best predictor of Fescfw, independently by the method used for the
calculation of Fesc. Graminoids are mainly erectophiles [29], because of this particular LAD, most of
the fluorescence is emitted laterally and therefore scattered by the vegetation [8]. In this work, we
tested different formulations of Fescfw with consistent results, in particular between the model-based
(Fescfw) and the data-driven (Fescemp) estimates. The fact that %graminoids is a good proxy for the
effect of structure on F760 and Fesc also opens interesting perspective to use F760 as well as Fesc to assess
taxonomic diversity, when diversity is somehow represented by changes in canopy architecture [63].

N% is an additional predictor selected for LUEf and LUEp, although the additional explained
variance seems marginal (Figure 5). N% is positively related to Vcmax [24,64], and under light saturated
conditions a higher Vcmax leads to an increase of LUEp and, to less extent, to increase of LUEf [65].
As hypothesized, from this analysis, it appears that the effect of N% on F760 and LUE equation terms is
not direct and, in Section 4.3, we discuss the relationships between N%, canopy structure, and the
observed variables.

4.3. Mechanisms behind the Treatment Effect on GPP and F760 at Leaf and Canopy Scale

The effect of canopy structure on F760 manifests itself mainly through variation in APAR and Fescfw

(Figures 6 and 2i,l, respectively). With the path analysis, we conclude that %graminoids positively
influences APAR that leads to an increase of F760leaf,fw indirectly. Moreover, %graminoids negatively
influence Fescfw. The changes of canopy structure mediated by changes in plant community at plot
level are the most important factors controlling the pathway between F760leaf,fw and F760, and ultimately
GPP and F760.

By analyzing the relationships between different components measured in the manipulative
experiment presented here, we were able to disentangle the pathways, mostly unknown [14,20],
through which N% influence the different components of the LUE equations. Our results show that
the largest effect of N% on fluorescence emission is not direct, but rather mediated by APAR and Ts
(Figure 6), which in turn affect F760leaf,fw.

There are two indirect ways in which N% affects F760leaf,fw: (i) Higher N% in the green fraction
of the vegetation is associated to an increase of photosynthetic pigments and in particular Cab in
leaves [64] and in the canopy [22], which ultimately has a positive effect on APAR [15,66]. Increase in
APAR causes higher fluorescence emission at leaf and canopy level (Figure 6) [67]. There are contrasting
results in the literature regarding the effect of N% on fluorescence and all the studies conducted at
the leaf level [14,15,26]. Our study at canopy level supports the findings in [15] that at varying levels
of N available APAR modulates F760leaf,fw and F760, and its relationship with GPP. (ii) N% influences
positively F760leaf,fw through Ts. N% has a negative effect on Ts and F760leaf,fw exhibits a negative



Remote Sens. 2019, 11, 2562 17 of 22

relationship with Ts. The first hypothesized mechanism is related with the observed increased in
Albedo400–900 (Figure 3e,f) associated with the higher N%. The effect of N% on albedo, despite being
quite debated in the literature [68,69], has been demonstrated both at canopy scale [70,71] and at leaf
level [72] and has to do with the increase in near infra-red (NIR) reflectance that is larger than the
decrease of the reflectance in the visible region due to higher Cab and light absorption. Therefore,
the increase of Albedo400–900 with increasing N% results in less available energy in the canopy, which
eventually leads to a decrease of Ts if other conditions such as soil moisture and VPD are similar [69,72].
The second has to do with the modulation of transpiration due to the fertilization (Figure 3g,h), which
cools down the canopy, as the leaf surfaces lose heat when water evaporates through the stomata.
Our estimate of LEISO show an increase in N and NP treatments during the peak of the growing season,
but it is not significant (Figure S3a,b) and lower than the changes in in Albedo400–900 for N, NP and P,
in particular in 2015 (Figure 3c,d). Given the strong response of GPP in the N and NP treatments in
2015 (Figure 2b), the mild change in LEISO (Figure S3a,b) suggests an increase of water use efficiency,
which is backed by δ13C measurements, which show a significant increase in the N and NP treatment
of Campaign 6 (Figure S2) (where less negative values correspond to higher WUE [73]). Therefore, we
can conclude that, although transpiration might be involved in the regulation of Ts at the peak of the
season, biophysical variables such as Albedo400–900 are much more affected by N% and contribute to
reduce Ts.

Given that a large amount of N is invested in Rubisco protein [23], N can impact directly the
carboxylation rates. The direct link between carboxylation rates and F760leaf is not yet clear [74].
However, we found a direct, though weak, relationship between N% and F760leaf,fw (Figure 6) that
is likely mediated by the ceiling effect mechanism described in the literature in an elevated CO2

manipulation experiment [19,65], but not yet observed in nutrient manipulation experiments.

5. Conclusions

This study analyzed and explained the underlying mechanism responsible for the changes in
gross primary productivity (GPP) and sun-induced fluorescence at 760 nm (F760), and their relationship,
due to a nutrient fertilization with nitrogen (N), phosphorous (P), and the combination of the two
nutrients (NP). The nitrogen additions (N and NP) had an effect mainly through changes in absorbed
photosynthetically active radiation (APAR) and escape probability of fluorescence (Fescfw). Changes
in APAR are directly related to changes in GPP and F760 and are due to the combination of changes in
canopy chlorophyll content and in species composition that modifies the canopy structure. Changes in
Fescfw are mainly due to the changes in the abundance of erectophile vegetation with N addition. In the
treatment with the addition of N, forbs (non-erectophile) increased while graminoids (erectophile)
decreased, which ultimately led to changes in leaf angle distribution and modified the F760 observed
in particular in 2015. This has an effect on GPP–F760 relationship both across treatments and from
year to year. Phosphorous addition had a significant effect on the light use efficiency of fluorescence,
in particular when combined with high nitrogen availability. This result points toward the need of better
understanding the thus far neglected role of phosphorous on modulating sun-induced fluorescence.

With a path analysis, we also revealed that N% not only affects F760 indirectly through APAR and
Fescfw, but also is tightly related with surface temperature (Ts). The negative relationship between N%
and Ts is biophysically mediated by higher albedo observed after the fertilization, and only marginally
physiological mediated by increase in transpiration. We also found a trade-off between F760 and Ts
(likely mediated by the non-photochemical quenching mechanisms), indicating the importance of
measuring simultaneously these two quantities. We finally found that Ts is also the main predictor of the
light use efficiency of photosynthesis, which is a fundamental parameter to improve the predictability
of GPP. In conclusion, our results show that both nutrient availability and their indirect effect on
biodiversity are fundamental drivers of sun-induced fluorescence, and its relationship with gross
primary productivity. Our results also reveal the interlink among fluorescence, surface temperature and
GPP, and support the importance of tandem missions such as the FLuorescence EXplorer (FLEX) and
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Sentinel-3, providing concomitant estimates of sun-induced fluorescence, vegetation related spectral
indices, and land surface temperature.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/21/2562/s1,
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treatments. Figure S4: Schematic of the radiometric and chamber footprint. Figure S5: Scatterplot of the two
APAR estimations. Figure S6: Scatterplot of modeled vs. observed GPP and F760. Figure S6: Relationship between
F760leaf from forward runs of SCOPE, inverse runs and empirical estimates. Figure S7: Scatterplot of GPP–F760 at
leaf and canopy scale across treatments. Figure S8: Relative importance analysis of GPP, F760, F760leaf,fw, F760leaf,inv,
LUEp, LUEf, and Fescfw with Ts −Ta instead of Ts. Figure S9: Set of equations that represent the model structure
for the path analysis. Figure S10: Path analysis without the nitrogen treatment. Figure S11: Path analysis without
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