000866615 001__ 866615
000866615 005__ 20210130003542.0
000866615 037__ $$aFZJ-2019-05696
000866615 041__ $$aEnglish
000866615 1001_ $$0P:(DE-Juel1)176627$$aNandakumaran, Nileena$$b0
000866615 1112_ $$a64th Annual Conference on Magnetism and Magnetic Materials$$cLas Vegas$$d2019-11-04 - 2019-11-08$$wUnited States
000866615 245__ $$aMagnetic small-angle neutron scattering from self-assembled iron oxide nanoparticles influenced by field
000866615 260__ $$c2019
000866615 3367_ $$033$$2EndNote$$aConference Paper
000866615 3367_ $$2DataCite$$aOther
000866615 3367_ $$2BibTeX$$aINPROCEEDINGS
000866615 3367_ $$2DRIVER$$aconferenceObject
000866615 3367_ $$2ORCID$$aLECTURE_SPEECH
000866615 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1575638260_7222$$xAfter Call
000866615 520__ $$aSelf-assembly of magnetic nanoparticles, in general, is of interest due to the broad range of applications in material science and biomedical engineering [1,2]. Parameters that affect self-assembly in nanoparticles include particle size, the applied magnetic field profile, concentration and synthesis routines [3]. A range of different sizes of iron oxide nanoparticles between 17 and 27 nm were investigated using polarized small-angle neutron scattering (SANS) at the KWS-1 instrument operated by the Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany. Nanoparticles were dispersed in toluene and measured at room temperature in a range of applied fields between ±2.2 T. The observed self-assembly strongly depended on both nanoparticle size and applied field. For smaller particles (diameter ≤ 20 nm), there was no indication of self-assembly even at high concentration (1% v/v), while 27 nm nanoparticles assemble into linear chains even in low concentrations (0.42% v/v) and low field.The smallest nanoparticles (d = 17 nm) were studied by contrast variation; by altering the isotopic composition of the toluene solvent, the magnetization profile within the cores of the nanoparticles could be extracted with high-resolution when using a spin-polarized incident neutron beam [4]. For larger nanoparticle, the structural and form factors were obtained by sector analysis of the 2-D SANS patterns (Fig. 1(a) and (b)). The extracted structure factors suggest that the chains grow longer and straighter and align more closely with the field direction up until application of the maximum field (Fig. 1(c)). This is understood in terms of a minimization of the dipole energy of the nanoparticles in the presence of the applied field and neighbouring particles. The implications for the control of self-assembly of more complex nanoparticles will be discussed.[1] G. Ozina, K. Hou, B. Lotsch, L. Cademartiri, D.Puzzo, F. Scotognella, A. Ghadimi, J. Thomson, Materials Today, Vol. 12, p.12 (2009)[2] P. Tartaj, Current Nanoscience, Vol. 2, p.43 (2006) [3] Z. Fu, Y. Xiao, A. Feoktystov, V. Pipich, M. Appavou, Y. Su, E. Feng, W. Jin and T. Brückel, Nanoscale, Vol. 8, p.18541 (2016)[4] A. Wiedenmann, Journal of Applied Crystallography, Vol. 33, p.428 (2000)
000866615 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000866615 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x1
000866615 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x2
000866615 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x3
000866615 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000866615 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000866615 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000866615 7001_ $$0P:(DE-Juel1)176191$$aKöhler, Tobias$$b1
000866615 7001_ $$0P:(DE-Juel1)172014$$aBarnsley, Lester$$b2$$eCorresponding author
000866615 7001_ $$0P:(DE-Juel1)169262$$aFeygenson, Mikhail$$b3
000866615 7001_ $$0P:(DE-Juel1)144382$$aFeoktystov, Artem$$b4
000866615 7001_ $$0P:(DE-Juel1)145895$$aPetracic, Oleg$$b5
000866615 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Thomas$$b6
000866615 909CO $$ooai:juser.fz-juelich.de:866615$$pVDB$$pVDB:MLZ
000866615 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176627$$aForschungszentrum Jülich$$b0$$kFZJ
000866615 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176191$$aForschungszentrum Jülich$$b1$$kFZJ
000866615 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172014$$aForschungszentrum Jülich$$b2$$kFZJ
000866615 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169262$$aForschungszentrum Jülich$$b3$$kFZJ
000866615 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144382$$aForschungszentrum Jülich$$b4$$kFZJ
000866615 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145895$$aForschungszentrum Jülich$$b5$$kFZJ
000866615 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b6$$kFZJ
000866615 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000866615 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x1
000866615 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x2
000866615 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x3
000866615 9141_ $$y2019
000866615 920__ $$lyes
000866615 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000866615 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000866615 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x2
000866615 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x3
000866615 980__ $$aconf
000866615 980__ $$aVDB
000866615 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000866615 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000866615 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000866615 980__ $$aI:(DE-588b)4597118-3
000866615 980__ $$aUNRESTRICTED