001     866615
005     20210130003542.0
037 _ _ |a FZJ-2019-05696
041 _ _ |a English
100 1 _ |a Nandakumaran, Nileena
|0 P:(DE-Juel1)176627
|b 0
111 2 _ |a 64th Annual Conference on Magnetism and Magnetic Materials
|c Las Vegas
|d 2019-11-04 - 2019-11-08
|w United States
245 _ _ |a Magnetic small-angle neutron scattering from self-assembled iron oxide nanoparticles influenced by field
260 _ _ |c 2019
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1575638260_7222
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Self-assembly of magnetic nanoparticles, in general, is of interest due to the broad range of applications in material science and biomedical engineering [1,2]. Parameters that affect self-assembly in nanoparticles include particle size, the applied magnetic field profile, concentration and synthesis routines [3]. A range of different sizes of iron oxide nanoparticles between 17 and 27 nm were investigated using polarized small-angle neutron scattering (SANS) at the KWS-1 instrument operated by the Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany. Nanoparticles were dispersed in toluene and measured at room temperature in a range of applied fields between ±2.2 T. The observed self-assembly strongly depended on both nanoparticle size and applied field. For smaller particles (diameter ≤ 20 nm), there was no indication of self-assembly even at high concentration (1% v/v), while 27 nm nanoparticles assemble into linear chains even in low concentrations (0.42% v/v) and low field.The smallest nanoparticles (d = 17 nm) were studied by contrast variation; by altering the isotopic composition of the toluene solvent, the magnetization profile within the cores of the nanoparticles could be extracted with high-resolution when using a spin-polarized incident neutron beam [4]. For larger nanoparticle, the structural and form factors were obtained by sector analysis of the 2-D SANS patterns (Fig. 1(a) and (b)). The extracted structure factors suggest that the chains grow longer and straighter and align more closely with the field direction up until application of the maximum field (Fig. 1(c)). This is understood in terms of a minimization of the dipole energy of the nanoparticles in the presence of the applied field and neighbouring particles. The implications for the control of self-assembly of more complex nanoparticles will be discussed.[1] G. Ozina, K. Hou, B. Lotsch, L. Cademartiri, D.Puzzo, F. Scotognella, A. Ghadimi, J. Thomson, Materials Today, Vol. 12, p.12 (2009)[2] P. Tartaj, Current Nanoscience, Vol. 2, p.43 (2006) [3] Z. Fu, Y. Xiao, A. Feoktystov, V. Pipich, M. Appavou, Y. Su, E. Feng, W. Jin and T. Brückel, Nanoscale, Vol. 8, p.18541 (2016)[4] A. Wiedenmann, Journal of Applied Crystallography, Vol. 33, p.428 (2000)
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
536 _ _ |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)
|0 G:(DE-HGF)POF3-6212
|c POF3-621
|f POF III
|x 1
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 2
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 3
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 0
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-1: Small angle scattering diffractometer
|f NL3b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS1-20140101
|5 EXP:(DE-MLZ)KWS1-20140101
|6 EXP:(DE-MLZ)NL3b-20140101
|x 0
700 1 _ |a Köhler, Tobias
|0 P:(DE-Juel1)176191
|b 1
700 1 _ |a Barnsley, Lester
|0 P:(DE-Juel1)172014
|b 2
|e Corresponding author
700 1 _ |a Feygenson, Mikhail
|0 P:(DE-Juel1)169262
|b 3
700 1 _ |a Feoktystov, Artem
|0 P:(DE-Juel1)144382
|b 4
700 1 _ |a Petracic, Oleg
|0 P:(DE-Juel1)145895
|b 5
700 1 _ |a Brückel, Thomas
|0 P:(DE-Juel1)130572
|b 6
909 C O |o oai:juser.fz-juelich.de:866615
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176191
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172014
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)169262
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144382
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145895
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130572
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6212
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 2
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 3
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k JCNS-1
|l Neutronenstreuung
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 2
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 3
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-588b)4597118-3
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21