000866628 001__ 866628
000866628 005__ 20240711101551.0
000866628 0247_ $$2doi$$a10.3390/en13030641
000866628 0247_ $$2Handle$$a2128/24398
000866628 0247_ $$2WOS$$aWOS:000522489000134
000866628 037__ $$aFZJ-2019-05707
000866628 082__ $$a620
000866628 1001_ $$0P:(DE-Juel1)176842$$aHoffmann, Maximilian$$b0$$eCorresponding author
000866628 245__ $$aA Review on Time Series Aggregation Methods for Energy System Models
000866628 260__ $$aBasel$$bMDPI$$c2020
000866628 3367_ $$2DRIVER$$aarticle
000866628 3367_ $$2DataCite$$aOutput Types/Journal article
000866628 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582723806_4116
000866628 3367_ $$2BibTeX$$aARTICLE
000866628 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866628 3367_ $$00$$2EndNote$$aJournal Article
000866628 520__ $$aDue to the high degree of intermittency of renewable energy sources (RES) and the growing interdependences amongst formerly separated energy pathways, the modeling of adequate energy systems is crucial to evaluate existing energy systems and to forecast viable future ones. However, this corresponds to the rising complexity of energy system models (ESMs) and often results in computationally intractable programs. To overcome this problem, time series aggregation (TSA) is frequently used to reduce ESM complexity. As these methods aim at the reduction of input data and preserving the main information about the time series, but are not based on mathematically equivalent transformations, the performance of each method depends on the justifiability of its assumptions. This review systematically categorizes the TSA methods applied in 130 different publications to highlight the underlying assumptions and to evaluate the impact of these on the respective case studies. Moreover, the review analyzes current trends in TSA and formulates subjects for future research. This analysis reveals that the future of TSA is clearly feature-based including clustering and other machine learning techniques which are capable of dealing with the growing amount of input data for ESMs. Further, a growing number of publications focus on bounding the TSA induced error of the ESM optimization result. Thus, this study can be used as both an introduction to the topic and for revealing remaining research gaps
000866628 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000866628 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1
000866628 7001_ $$0P:(DE-Juel1)168451$$aKotzur, Leander$$b1
000866628 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b2
000866628 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b3
000866628 773__ $$0PERI:(DE-600)2437446-5$$a10.3390/en13030641$$n3$$p641$$tEnergies$$v13$$x1996-1073$$y2020
000866628 8564_ $$uhttps://juser.fz-juelich.de/record/866628/files/Invoice_MDPI_energies-649391_1413.83EUR.pdf
000866628 8564_ $$uhttps://juser.fz-juelich.de/record/866628/files/Hoffmann-2020-Energies-A%20Review%20of%20Time%20Series%20Aggregation....pdf$$yOpenAccess
000866628 8564_ $$uhttps://juser.fz-juelich.de/record/866628/files/Invoice_MDPI_energies-649391_1413.83EUR.pdf?subformat=pdfa$$xpdfa
000866628 8564_ $$uhttps://juser.fz-juelich.de/record/866628/files/Hoffmann-2020-Energies-A%20Review%20of%20Time%20Series%20Aggregation....pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866628 8767_ $$8energies-649391$$92020-01-14$$d2020-01-17$$eAPC$$jZahlung erfolgt$$penergies-649391 Your Order: by e-mail (max.hoffmann
000866628 909CO $$ooai:juser.fz-juelich.de:866628$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000866628 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176842$$aForschungszentrum Jülich$$b0$$kFZJ
000866628 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)176842$$aRWTH Aachen$$b0$$kRWTH
000866628 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168451$$aForschungszentrum Jülich$$b1$$kFZJ
000866628 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b2$$kFZJ
000866628 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b2$$kRWTH
000866628 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b3$$kFZJ
000866628 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000866628 9141_ $$y2020
000866628 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866628 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000866628 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000866628 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866628 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGIES : 2017
000866628 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000866628 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000866628 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866628 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866628 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866628 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866628 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866628 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866628 920__ $$lyes
000866628 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000866628 9801_ $$aAPC
000866628 9801_ $$aFullTexts
000866628 980__ $$ajournal
000866628 980__ $$aVDB
000866628 980__ $$aUNRESTRICTED
000866628 980__ $$aI:(DE-Juel1)IEK-3-20101013
000866628 980__ $$aAPC
000866628 981__ $$aI:(DE-Juel1)ICE-2-20101013