001     866628
005     20240711101551.0
024 7 _ |a 10.3390/en13030641
|2 doi
024 7 _ |a 2128/24398
|2 Handle
024 7 _ |a WOS:000522489000134
|2 WOS
037 _ _ |a FZJ-2019-05707
082 _ _ |a 620
100 1 _ |a Hoffmann, Maximilian
|0 P:(DE-Juel1)176842
|b 0
|e Corresponding author
245 _ _ |a A Review on Time Series Aggregation Methods for Energy System Models
260 _ _ |a Basel
|c 2020
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582723806_4116
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Due to the high degree of intermittency of renewable energy sources (RES) and the growing interdependences amongst formerly separated energy pathways, the modeling of adequate energy systems is crucial to evaluate existing energy systems and to forecast viable future ones. However, this corresponds to the rising complexity of energy system models (ESMs) and often results in computationally intractable programs. To overcome this problem, time series aggregation (TSA) is frequently used to reduce ESM complexity. As these methods aim at the reduction of input data and preserving the main information about the time series, but are not based on mathematically equivalent transformations, the performance of each method depends on the justifiability of its assumptions. This review systematically categorizes the TSA methods applied in 130 different publications to highlight the underlying assumptions and to evaluate the impact of these on the respective case studies. Moreover, the review analyzes current trends in TSA and formulates subjects for future research. This analysis reveals that the future of TSA is clearly feature-based including clustering and other machine learning techniques which are capable of dealing with the growing amount of input data for ESMs. Further, a growing number of publications focus on bounding the TSA induced error of the ESM optimization result. Thus, this study can be used as both an introduction to the topic and for revealing remaining research gaps
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|x 1
|c PHD-NO-GRANT-20170405
|a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
700 1 _ |a Kotzur, Leander
|0 P:(DE-Juel1)168451
|b 1
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 2
700 1 _ |a Robinius, Martin
|0 P:(DE-Juel1)156460
|b 3
773 _ _ |a 10.3390/en13030641
|0 PERI:(DE-600)2437446-5
|n 3
|p 641
|t Energies
|v 13
|y 2020
|x 1996-1073
856 4 _ |u https://juser.fz-juelich.de/record/866628/files/Invoice_MDPI_energies-649391_1413.83EUR.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/866628/files/Hoffmann-2020-Energies-A%20Review%20of%20Time%20Series%20Aggregation....pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/866628/files/Invoice_MDPI_energies-649391_1413.83EUR.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/866628/files/Hoffmann-2020-Energies-A%20Review%20of%20Time%20Series%20Aggregation....pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866628
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176842
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)176842
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168451
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)129928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156460
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGIES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Technoökonomische Systemanalyse
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21