001     866632
005     20240529111728.0
037 _ _ |a FZJ-2019-05711
041 _ _ |a English
100 1 _ |a Gutberlet, Thomas
|0 P:(DE-Juel1)168124
|b 0
|e Corresponding author
111 2 _ |a Kolloquium der Abteilung 6
|c PTB-Braunschweig
|d 2019-11-28 - 2019-11-28
|w Germany
245 _ _ |a NOVA ERA - A compact accelerator driven neutron source for universities
|f 2019-11-28 -
260 _ _ |c 2019
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Talk (non-conference)
|b talk
|m talk
|0 PUB:(DE-HGF)31
|s 1574329675_25089
|2 PUB:(DE-HGF)
|x Invited
336 7 _ |a Other
|2 DINI
520 _ _ |a Neutron scattering has proven to be one of the most powerful methods for the investigation of structure and dynamics of condensed matter on atomic length and time scales. A severe drawback in using neutrons is the limited possibilities to access neutrons offered via nuclear research reactors or accelerator driven spallation sources. To provide neutrons in a more easy and accessible way for science, training and industrial use is a challenge. The concept of a compact accelerator based neutron source is a new approach to tackle this challenge with the aim to bring neutrons to the users on demand and cost effective. Compact accelerator based neutron sources (CANS) produce neutrons by nuclear reaction between a low energy proton beam (< 20 MeV) and light elements as beryllium or lithium. Depending on the power of the accelerator and the number of target stations and instru­ments such a source can provide easy and efficient access to neutrons and complement small and medium flux reactor or spallation based neutron sources. With the aim to design CANS to be operated at universities, research institutes or industry laboratories a conceptual design report has been developed at JCNS for a small neutron source named NOVA ERA (Neutrons Obtained Via Accelerator for Education and Research Activities). Such a neutron source can be built at low cost with low maintenance efforts and without nuclear licensing procedure as small accelerator facility. Main features of this new concept including experimental options for imaging, structure analysis and irradiation options will be presented and discussed.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 1
536 _ _ |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)
|0 G:(DE-HGF)POF3-6212
|c POF3-621
|f POF III
|x 2
536 _ _ |a 6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)
|0 G:(DE-HGF)POF3-6213
|c POF3-621
|f POF III
|x 3
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 4
909 C O |o oai:juser.fz-juelich.de:866632
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168124
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6212
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6213
|x 3
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 4
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-HBS-20180709
|k JCNS-HBS
|l High Brilliance Source
|x 3
980 _ _ |a talk
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)JCNS-HBS-20180709
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21