000866635 001__ 866635
000866635 005__ 20240708133106.0
000866635 0247_ $$2doi$$a10.1016/j.ijhydene.2019.12.161
000866635 0247_ $$2ISSN$$a0360-3199
000866635 0247_ $$2ISSN$$a1879-3487
000866635 0247_ $$2Handle$$a2128/26037
000866635 0247_ $$2altmetric$$aaltmetric:83299481
000866635 0247_ $$2WOS$$aWOS:000519652800069
000866635 037__ $$aFZJ-2019-05714
000866635 082__ $$a620
000866635 1001_ $$0P:(DE-Juel1)171337$$aCaglayan, Dilara Gülcin$$b0$$eCorresponding author$$ufzj
000866635 245__ $$aTechnical Potential of Salt Caverns for Hydrogen Storage in Europe
000866635 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2020
000866635 3367_ $$2DRIVER$$aarticle
000866635 3367_ $$2DataCite$$aOutput Types/Journal article
000866635 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604415254_32573
000866635 3367_ $$2BibTeX$$aARTICLE
000866635 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866635 3367_ $$00$$2EndNote$$aJournal Article
000866635 520__ $$aThe role of hydrogen in a future energy system with a high share of variable renewable energy sources (VRES) is regarded as crucial in order to balance fluctuations in electricity generation. These fluctuations can be compensated for by flexibility measures such as the expansion of transmission, flexible generation, larger back-up capacity and storage. Salt cavern storage is the most promising technology due to its large storage capacity, followed by pumped hydro storage. For the underground storage of chemical energy carriers such as hydrogen, salt caverns offer the most promising option owing to their low investment cost, high sealing potential and low cushion gas requirement. This paper provides a suitability assessment of European subsurface salt structures in terms of size, land eligibility and storage capacity. Two distinct cavern volumes of 500,000 m3 and 750,000 m3 are considered, with preference being given for salt caverns over bedded salt deposits and salt domes. The storage capacities of individual caverns are estimated on the basis of thermodynamic considerations based on site-specific data. The results are analyzed using three different scenarios: onshore and offshore salt caverns, only onshore salt caverns and only onshore caverns within 50 km of the shore. The overall technical storage potential across Europe is estimated at 84.8 PWhH2, 27% of which constitutes only onshore locations. Furthermore, this capacity decreases to 7.3 PWhH2 with a limitation of 50 km distance from shore. In all cases, Germany has the highest technical storage potential, with a value of 9.4 PWhH2, located onshore only in salt domes in the north of the country. Moreover, Norway has 7.5 PWhH2 of storage potential for offshore caverns, which are all located in the subsurface of the North Sea Basin.
000866635 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000866635 536__ $$0G:(DE-HGF)ES2050$$aES2050 - Energie Sytem 2050 (ES2050)$$cES2050$$x1
000866635 588__ $$aDataset connected to CrossRef
000866635 7001_ $$0P:(DE-HGF)0$$aWeber, Nikolaus$$b1
000866635 7001_ $$0P:(DE-Juel1)145221$$aHeinrichs, Heidi$$b2$$ufzj
000866635 7001_ $$0P:(DE-Juel1)130470$$aLinssen, Jochen$$b3$$ufzj
000866635 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b4$$ufzj
000866635 7001_ $$0P:(DE-HGF)0$$aKukla, Peter$$b5
000866635 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b6$$ufzj
000866635 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2019.12.161$$gVol. 45, no. 11, p. 6793 - 6805$$n11$$p6793 - 6805$$tInternational journal of hydrogen energy$$v45$$x0360-3199$$y2020
000866635 8564_ $$uhttps://juser.fz-juelich.de/record/866635/files/HE-D-19-05898_R1-pages-1%2C6-29.pdf$$yPublished on 2020-01-18. Available in OpenAccess from 2021-01-18.
000866635 8564_ $$uhttps://juser.fz-juelich.de/record/866635/files/HE-D-19-05898_R1-pages-1%2C6-29.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-01-18. Available in OpenAccess from 2021-01-18.
000866635 909CO $$ooai:juser.fz-juelich.de:866635$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866635 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171337$$aForschungszentrum Jülich$$b0$$kFZJ
000866635 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000866635 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145221$$aForschungszentrum Jülich$$b2$$kFZJ
000866635 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130470$$aForschungszentrum Jülich$$b3$$kFZJ
000866635 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b4$$kFZJ
000866635 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH
000866635 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b6$$kFZJ
000866635 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b6$$kRWTH
000866635 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000866635 9141_ $$y2020
000866635 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866635 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000866635 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866635 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000866635 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000866635 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2017
000866635 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866635 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866635 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866635 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866635 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866635 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866635 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866635 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866635 920__ $$lyes
000866635 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000866635 9801_ $$aFullTexts
000866635 980__ $$ajournal
000866635 980__ $$aVDB
000866635 980__ $$aUNRESTRICTED
000866635 980__ $$aI:(DE-Juel1)IEK-3-20101013
000866635 981__ $$aI:(DE-Juel1)ICE-2-20101013