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Abstract

In this paper, we propose a microscopic method to evaluate continuous pedestrian dynamic
models at the trajectory level. By comparing the experimental and the simulated trajectory
in four directions, the evaluation of the model can be described by a radar chart, with which
both qualitative and quantitative conclusions can be obtained. In order to demonstrate
our method, we evaluate a social force model by 1,936 trajectories with graded densities
in three different scenarios. Three qualitative conclusions are obtained by observing radar
charts of the simulation of the unidirectional experiments. All of them are verified by the
comparison of the macroscopic parameters. Besides, we find that a model with smaller error
in our method always has a better performance at the macroscopic level. At last, the possi-
ble quantitative descriptions of the method are discussed. Compared to the evaluations by
comparing collective features like fundamental diagram, our method is general, comprehen-
sive and quantitative. The method provides a new possibility to evaluate any continuous
pedestrian dynamic model in any scenario with a standard process.

Keywords: Pedestrian dynamics, social force model, evaluation, trajectory, radar chart,
validation

1. Introduction

The modeling of pedestrian movements has been a hot topic in the past decades for its
wide application in architecture [1], safety engineering [2, 3|, urban planning [4], robotics
and animation [5]. A large number of models, such as cellular automata (CA) [6, 7, §],
force-based models [9, 10, 11], velocity based models [12], Goal-oriented models [13, 14, 15],
and the optimal step model (OSM) [16, 17] have been developed. To make the models more
realistic, calibrating and validating processes are necessary before applying the modeling
results into practice.
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In the process of calibrating and validating, a generalized evaluating method and a di-
verse experimental database are important. In this paper, we divide the existing evaluating
methods into macroscopic and microscopic with respect to the level of the data they use.
Collective characteristics such as flow rate [18, 19], movement time [20], the relation be-
tween velocity and density (known as fundamental diagram) [11] or their combinations [21]
are often used in the macroscopic methods. Macroscopic methods are straightforward, for
the reason that some characteristics are the main focus for the application of the model. Be-
sides, there are some well-know collective benchmarks [22, 23]|. Nevertheless, there are some
common problems in the macroscopic methods. At fist, macroscopic evaluating methods are
always qualitative, which is a barrier when a comparison between different models has to be
made. In [24], the shape of the curve plotted from pedestrian number inside the corridor
as a function of time is compared between simulations and experiments. In [21], experimen-
tal and simulation trajectories are compared by the overlap of the trajectories. Although
from these comparisons it is possible to draw some conclusions with respect to experimental
data, it is however difficult to perform evaluations and ratings when a lot of models, which
have different shapes of curves and distributions of trajectories, have to be compared with
each other. Secondly, the applicability of the macroscopic methods in different scenarios is
limited and can be scenario specific. For example, the movement time is always used in the
bottleneck scenario, while it could be meaningless when describing pedestrian movements
in a corridor. Finally, it is possible that a model has considerable accuracy when evaluated
with a macroscopic feature while has big error when evaluated with another feature. This
phenomenon has been described in [21], in which the simulation flow matches the experi-
mental flow well by adjusting parameters, while the time series of density still show obvious
discrepancies with respect to experiments. The reason is summarized as that the coincident
flow through bottleneck is actually achieved by the discrepant density and velocity [21].

The microscopic method is usually defined at the trajectory level. Simulating the move-
ment of one pedestrian with a spacial continuous model while the other pedestrians are
moving according to the experimental trajectories, we can get a simulated trajectory of a
specific participant. In [25, 26], error (e) is defined based on acceleration difference between
simulated and experimental trajectories:

end
ti
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where i is a pedestrian, ¢ is the time stamp, [fZ(t), f/(t)] is the acceleration at time ¢
obtained from experimental trajectory, and [f(t), f/(t)] is the acceleration simulated by a
social-force-based model at time ¢. According to the definition, the comparison is based on
the second derivation of a trajectory. This method has been criticized by the authors of
Ref. [25] themselves in their another work [27], in which they think the body sway affects
the acceleration obtained from head trajectories, while the effect is not considered in the
social force model. Besides, the acceleration is sensitive to small noises of a trajectory. In
our opinion, it is also a limitation of the model if it can only be used in the evaluating of the
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force-based models. Hence in [27, 28], e is based on the position rather than the acceleration
of pedestrians:

end
ti

e=S" 3" Dipilt), ()2 (# — ) /A, (2)
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where p;(t) is the measured position of pedestrian i at time ¢. p;(t) is the simulated position.
The function D() is to solve the distance between two points. Because of trajectories in
the simulation and in the experiment are only synchronized when a pedestrian entering a
scenario, e in this method will be sensitive to the direction discrepancy and the length of the
trajectory. Imagining that if a small direction discrepancy happens at the beginning of the
simulation, the error obtained by Eq. 2 will be amplified with the increasing of the trajectory
length. This problem is improved in [29], in which the pedestrians in the simulation and in
the experiment are synchronized every 1.5 s. Although the existing microscopic evaluating
methods are able to optimize parameters of a model, there are some problems when applying
them to evaluate a model. The main problem is that the errors in existing microscopic
methods are one dimensional, from which we can only know the performance of a model is
better or worse than another model. However, what results in the performance difference
can not be speculated from the results described by numbers.

Besides, trajectory data used in existing microscopic estimation methods are singular:
bidirectional trajectories in corridors [28] or several observation scenarios [27, 29]. Com-
prehensive evaluation in different densities and scenarios are still rare. In this paper, we
evaluate a continuous model with a directional microscopic method. The method is pro-
posed in Section 2. Based on the method a model introduced in Section 3 is evaluated in
Section 4. At last, we discuss the results in Section 5.

2. Methods

To avoid the problems mentioned in Section 1, a generalized method is designed to
include the following features:

sort

The original trajectory of a pedestrian i (j¢") used in the method is the positions at
continuous time steps: ' ‘
gt = {rf’,’f n=0,1,2 ..}, (3)

ort

where 77 is the pedestrian position at the n-th time step. Extracting head positions from
top-view videos could be the most common used method to obtain a trajectory. To reduce
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the influence of the swing of the head, the trajectory should be smoothed before solving

the velocity. The smoothing method and the velocity solving method are introduced in

Appendix A. If the evaluation is conducted on each time step, the result of the model will

be sensitive to small errors, especially the angular error defined in Eq. 5. So the trajectory

is resmapled after smoothing. The resampling method is also introduced in Appendix A.

Furthermore, an area selection technique is provided to conduct an evaluation in a specific
‘res -slc

area A. A point in j7* (a trajectory after the resampling) belongs to j7*¢ (the trajectory
after the selection) if it is inside A:

-sle smt|,,smt 1
g = A riet € Ak € {0,N,2N, ...} }. (4)
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Fig. 1. The procedures of the trajectory processing and the evaluation.

The procedures of the trajectory processing are shown in Fig. 1 (a)-(d). In the following,
we define the microscopic error by comparing trajectories in the simulation and in the
experiment. At time step k in j5%, all agents in the simulation have the same position and
velocity with the pedestrians in the experiment. The movement of pedestrian 7 is simulated
with a continuous model until £+ N, while the other pedestrians are moved exactly as their

smoothed trajectories in the experiment. The distance error d and the angular error # are

d(k) = ([lal[ — [|b][)/ D,
axb

Tl (5)
a ="k 4 N) - k),

(2

b=r"(k+N)—r"(k),

(2

0(k) = arcsin (

sim
i

(k) is the pedestrian position at the k-th time step in the simulation. D =

where r 1
and © = 1 rad are the normalized parameters. According to the definition and Fig. 1 (e

)

1rf”,€”t is the k-th time step in the smoothed trajectory. N in the resampling interval. More details see
Appendix A.
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a is the motion vector of the pedestrian in the simulation, and b is the motion vector in the
experiment. Therefore, when d(k) > 0, the mean speed in the simulation is larger than that
in the experiment. When 6(k) > 0, the direction of the velocity has a bias to right when
comparing to that in the experiment. Based on d and 6, the error of the frame ey, (k) is

era(k) = {d"(k),d"(k),0" (k),0" (k)}, (6)
where dt = ||d||, d= = 0 when d > 0. d* = 0, d~ = ||d|| when d < 0. 6% and 6§~ are
obtained with a similar manner. The four elements describe the error of the speed and the
direction in positive and negative respectively. The error of the trajectory e;;(j;) is

etrj(Ji) = {pa+ (Ji), pa- (i) s o+ (Ji)s o~ (Ji) } (7)

where piq+(j;) = n—lk >~ d*(k) is the mean value of all frames in the direction of d* (ny is the

-slc

number of frame in 75°¢). ug-(j:), pe+(J:), and ug-(j;) can be solved analogically. According
to the definition, e,;(j;) describes the mean errors of a trajectory in the four directions. At
last, the error of the experiment e, (z;) is

Ceap(Ti) = {{pa+ (i), 00+ (4) }, {pta- (i), 00~ (2:) }, {po+ (2:), o0+ (7:) }, {pto- (), 79— (1) }
(8)
Each item of e.,,(z;) is composed of the mean value and the standard deviation of all
trajectories in the specific direction:

pa+ () = %Zaﬁ(ﬁ),

I (9)
oar (i) = \/n—] D (par (i) = pas ()2,

where n; is the number of trajectories in the experiment. eg,(z;) can be visualized with
a radar chart (also referred as a error chart of an experiment). As shown in Fig. 1 (f),
the vertex of inside polygon is the mean value. The vertex of the outside polygon is the
sum of mean value and the standard deviation. Synthesizing the mean values, the standard
deviations and the symmetry of the chart, the evaluation result can be described with a
number E(z;):

B(x,) = exp (P(x;) + S(x:) + Y (w)), (10)

where
P = pig+ + pa- + po+ + -

is the sum of the mean values (referred as the precision of the model),
S = Og+ + 04— + 09+ + 09—

is the sum of the standard deviations (referred as the stability of the model), and
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Y:(|(Md++0d+)—(ﬂd—+0d—)’ |(M9++09+)—(M9—+00—)\)
|(a+ + 0a+) + (pta- +04-)|  [(o+ + 09+) + (pto- + 09-)|

is the symmetric factor of the outside polygon in the radar chart (referred as the symmetry
of the model).

3. Materials

3.1. Specification of the Social Force Model

The circular specification of the social force model [29, 30] is selected to demonstrate the
evaluation process of the method. In this model, velocity is calculated with an acceleration
equation when no physical contact happens between pedestrians:

dv, e, —v;

o= +J§) Fii(t) + ;fiw(t). (11)

The first term is the desire force, which describes the pedestrian is willing to move to a
desire direction e; with a desire speed v). wv; is the velocity. 7; is the relaxation time (the
time needed to accelerate to desire velocity). fi; is the repulsive force between pedestrian 4
and pedestrian j:

d..
Fult) = 3 A Bt BBy, (12)
j g
where d;; is the vector point from j to i. R; and R; are the radius of the pedestrian. In
our evaluation, R = 0.25 m. A; reflects the strength of interaction, and B; corresponds to
the interaction range. w(¢p;;) is the anisotropy factor describing the different reactions of a

pedestrian to what happens in front and behind:

1 + COS(QOU)

w(py) = A+ (1 - N ) (13)
vi  —d.
cos(pij) = ——— + 2. (14)
il [ldy]|
The repulsive force of wall has a similar form with Eq. (12):
Fur(t) = Ayl Bl e G (15)
w1 w dlw ?

in which d;,, is the vector points from the pedestrian to the point on the wall which has the
minimal distance to the pedestrian. Parameters listed in Table 1 are the calibration results
of the evolutionary adjustment from three observation experiments [29]. P is the calibration
results without considering the anisotropy (A = 1), and P, is the optimal parameters with an
appropriate anisotropy factor (A = 0.12). Note that in [30], the parameters of the repulsive
forces of the wall and the pedestrians are not distinguished. So A, and B,, are the same
with A; and B; in P, and P,. P; is the adjusting result of this paper.
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Table 1: Parameter sets in Ref. [29] and in this paper.

Parameters A, By A; B; A T

Py 0.11 0.84 0.11 0.84 1 0.5
P 042 1.65 042 165 0.12 0.5
Py 0.80 0.30 042 125 0.12 0.5

3.2. Trajectory Database

Trajectories used in the evaluation come from PED Data Archive 2, which are extracted
automatically from video recordings of controlled experiments by using the software PeTrack
[31]. Experiments of unidirectional, bottleneck, bidirectional scenarios are involved in the
evaluation. Sketches of these scenarios are shown in Fig. 2, in which pedestrians start from
the waiting area (blue rectangle in Fig. 2), then cross the corridor with an expected exit
(red dashed line in Fig. 2). Density in the corridor is controlled by the width of entrance
bi, and the number of pedestrians in the waiting area.

All participants walk from the left to the right to cross the corridor in unidirectional and
bottleneck experiments(more details of the experiments can be found in [32]). In bidirec-
tional experiments, participants are asked to leave the corridor by left or right side according
to a number given to them in advance. We simulate the process by setting four virtual exits.
As shown in Fig. 2 (c), the width of each exit is 1/3 of the total width. The desire exit is
assigned the one which is more close to the pedestrian when he or she leaves the corridor.
More information about the bidirectional experiments can be found in [33]. To reduce the
influence of the entrance and the exit, investigation areas are selected as the middle part in
the corridor (yellow areas in Fig. 2). Parameters of the experiments are shown in Table 2.
According to [32, 33], the desire speed is vy = 1.5 m/s in the experiments.

Table 2: Experiment parameters. In bidirectional experiments, the two numbers of “Participant number”
are the pedestrians in the left and right waiting area respectively. p is the mean density in the investigation
area.

Scenario Experiment  Participant number b, (m)  be.it(m) p(ped/m? or m)

Unidirectional Ui 61 0.50 - 0.40
U, 66 0.60 - 0.46

Us 111 0.70 - 0.57

Uy 121 1.00 - 0.93

Us 175 1.45 - 1.30

Us 220 1.80 - 1.38

Bottleneck Ty 170 1.80 1.20 1.63
T 159 1.80 0.95 1.93

T 148 1.80 0.70 2.24

Bidirectional By 54/71 0.50 - 0.42
By 61/86 0.75 - 0.65

Bs 119/97 0.85 - 0.97

By 125/105 1.00 - 1.33

2http://ped.fz-juelich.de/db
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Fig. 2. Sketch of experiments in different scenarios. (a) Unidirectional scenario. (b) Bottleneck scenario.
(c) Bidirectional scenario.

4. Results

4.1. microscopic evaluation in unidirectional scenario

By observing the error charts of the parameter set P, we find that the speed in the
simulation is much larger than that in the experiment, especially in high density situations.
The radar chart of ec,,(Us) with P; is shown in Fig. 3(a), in which the simulated speed
is much larger than the actual speed in experiment. The possible reason could be that
the repulsive force between pedestrians is too weak. We adjust the force by increasing A;
to 0.50. However, according to Fig. 3(b), the symmetry has no improvement while the
stability becomes even worse. The reason should be that when A = 1, repulsive forces
from front and back pedestrians are similar in most cases when the pedestrian is walking
in the controlled experiments. The forces will be counteracted by each other along the
walking direction. Further increasing A; does not slow down the pedestrian. While after
considering the anisotropy (A = 0.12), the speed becomes smaller (see Fig. 3(C)), and there
is a significant improvement of the symmetry. In summary, a systematic error (bias to d*)
will be caused when using isotropous repulsive force between pedestrians.

The error chart of e.,,(Us) with P is shown in Fig. 3 (d). Compared to the Fig. 3 (c), the
speed becomes smaller, while the error of direction (0" and 6~) becomes larger. Considering
the strength factor A; in Fig. 3 (c) is smaller than that in Fig. 3 (d), but the speed is much
slower, we suspect that the effective range factor B; is too large in P;, since with a large B;,
more neighbors will have significant influence to the pedestrian. Sequentially, the speed will
be smaller. If a pedestrian is close to the wall, the crowd around her will be asymmetric.
As a result, the direction error (™ and #~) will be large in such a case.
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Fig. 3. Radar chart of e.y,(Us) with different A;, B, and A

Furthermore, the performance of the wall repulsive force (Eq. 15) can be evaluated with
the error chart of the dot area in Fig. 2(a), which is the upper half of the yellow area.
According to Fig. 4, the simulated trajectories drift away from the wall in low density,
while drift toward the wall in high density. It means that the repulsive force is too strong
in low density and too weak in high density. This is due to the fact that a wall acts
like a static pedestrian, if the repulsive forces of wall-pedestrians and pedestrian-pedestrian
have the same strength parameter. In low density, there are less lateral agents around the
pedestrian. In addition to the anisotropy is not considered in Eq. 15, the lateral force
exerted by the wall will be larger than the repulsive force of pedestrians in most cases. In
high density, however, the lateral force of pedestrians increases significantly while the force
of wall remains unchanged. We think this problem can be improved by increasing A,, and
decreasing B,, to obtain a stronger wall repulsive force near the wall, and a weaker wall
repulsive force far from the wall.

Fig. 4. Evaluations of dot area in unidirectional experiments.

In summary, three conclusions are obtained with the microscopic evaluation:

(1) The simulated speed is too large in high density situations with P;.

(2) The simulated speed is too small in high density situations with P,.
9



(3) The pedestrians are too close to the wall in high density situations with P.

4.2. macroscopic verification in unidirectional scenario

To verify the conclusions in Sec. 4.1, we simulate the movements of all pedestrian with
the following rules:

(a) Pedestrians move as in the experiments before they enter the simulation field.
(b) Pedestrians are driven by the model when they are in the simulation field.

(¢) Pedestrians are removed when they are outside the simulation field.

The simulation field of the unidirectional scenario is the green box in Fig. 2 (a). In
experiments, pedestrians still move to leave the scenario after they walk out of the corridor.
Hence, simulation field is two meters longer than the corridor. Then we can make a compar-
ison with some macroscopic features. At first, the trajectories of Ug in the experiment and
the simulations are shown in Fig 5. For clarity, ten percent of trajectories are displayed.

(a) (b) () (d)

Fig. 5. Experimental and simulated trajectories of Us. (a) Experimental trajectories. (b) Simulated with
P;. (c) Simulated with P,. (d) Simulated with A,, = 0.80, B,, = 0.30.

As shown in Fig. 5 (c), some trajectories near the wall intersect with the wall. It indicates
that the wall repulsive force is too small with P, and some pedestrians are pushed outside
the wall in high density. Therefore, conclusion (3) is correct.

Then we verify the conclusions (1) and (2) by comparing the mean speed. According
to Fig. 6 (a), the mean speed of all pedestrians in the simulation with P; is close to the
free speed 1.5 m/s in the whole simulation. While in the experiment, the speed decreases
clearly with more pedestrians entering the investigation area. It indicates that the isotropous
social force between pedestrians is unable to slow down the pedestrians in Ugs. Therefore,
conclusion (1) is correct.

However, according to Fig. 6 (a), in most time steps the mean speed with P, is also
larger than that in the experiment, rather than smaller as shown in Fig. 3 (d). We think
the main reason is that in the simulation of the macroscopic evaluation, some pedestrians
are removed when they cross the wall, so that it is irrational to verify conclusion (2) by
comparing the speed of the crowd directly. Considering no pedestrian crosses the wall with
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Fig. 6. The comparison of the speed in the experiment and the simulations.

Py (see Fig. 5 (a)), we think that conclusion (1) still holds. Hence, the wall repulsive force
should be adjusted first before verifying conclusion (2).

According to the fact mentioned in Sec. 4.1, A,, should be increased and B,, should be
decreased. The trajectories simulated with A, = 0.80, B,, = 0.30 (the other parameters
are the same with the values in P») are shown in Fig. 5 (d), in which all pedestrians move
inside the investigation area. Then we compare the mean speed in Fig. 6 (b). In most time
steps, the speed in the simulation is smaller than that in the experiment. The conclusion
(2) is verified. Furthermore, we follow the fact mentioned in Sec. 4.1 to decrease B; in P.
The error chart with B; = 1.25 is shown in Fig. 7. Both the inner polygon and the outer
polygon are small and symmetrical. As it is shown in Fig. 6 (b), the macroscopic parameter
(mean speed) also shows a good agreement with the experiment.

P Py A, =080, B, = 0.30 Py

Fig. 7. The error charts of e.;,(Us) with different parameter sets.

In summary, all of the three conclusions deduced from the error charts of the microscopic
evaluation method are verified by the macroscopic comparisons. The directions of the bias
in the error charts have good agreements with the macroscopic evaluations. Most of all,
according to Fig. 6 and 7, a parameter set with a smaller error at the microscopic level
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always has a better performance at the macroscopic level.

4.83. Quantitative results of the microscopic evaluation

Evaluating all experiments with the microscopic method, we get a comprehensive and
quantitative assessment of the investigated model. The evaluation results of P, and Pj are
shown in Table. 3. From the table we can see that from P, to P3, the improvement is signif-
icant in unidirectional and bidirectional experiments, especially in high density situations.
While the improvement is not significant in bottleneck experiments. When focusing on P,
and Pj respectively, we find that P, has a better performance in low density, unidirectional
and bottle neck scenarios. P3 has a better performance in high density, unidirectional and
bidirectional scenarios. This implies the parameter are “optimal” only with respect to a
specific scenario and density . If a threshold (E = 1.55) is set for the applicability, we
can obtain a quantitative description of P5;. Based on the evaluation results of trajectories
database of this paper, Pj is applicable in unidirectional scenario with a mean density ranges
from 0.93 to 1.38 ped/m?. However, the threshold may be different when applying the model
to different scenarios.

Table 3: Quantitative evaluation results of P, and Ps.

z; exp(P(zi)) exp(S(xi)) exp(Y(;)) E(z;)
P Ps P P P P P Ps
U, 118 1.16 122 121 125 121 1.80 1.70
U, 116 115 119 120 131 1.20 1.81 1.70
Us 112 123 1.18 1.17 137 120 1.85 1.58
u, 117 111 116 1.14 148 123 2.01 1.55
Us 120 113 125 1.16 137 1.11 195 1.46
Us 121 112 125 1.16 1.37 1.03 207 1.34
77 130 1.22 140 1.25 1.08 1.22 1.96 1.87
Ty, 141 1.33 151 1.29 1.22 145 259 2.51
T3 154 136 1.71 142 1.05 1.18 2.77 2.29
By 123 1.18 118 1.17 162 1.55 236 214
By 122 114 127 115 146 139 237 1.81
B; 122 1.16 127 119 146 1.14 237 1.58
By, 140 122 141 126 166 1.19 3.28 1.83

5. Conclusion

In this paper, we propose a microscopic method to evaluate a continuous model by
means of the trajectories. The microscopic error of a trajectory is defined in four directions,
which corresponds to the positive and the negative deviations of the speed and the direction
respectively. The microscopic error of an experiment, which can be visualized by a radar
chart, is then defined as the mean values and standard deviations of all trajectories in the
experiment. Qualitative conclusions can be deduced from the radar chart. Synthesizing the
vertex values and the shape of the radar chart, the evaluation result is finally described by
a quantitative value.
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With the microscopic method, a social force model is evaluated with 1,936 trajectories
in three different scenarios. Based on the error charts of unidirectional experiments, three
qualitative conclusions are summarized. Some suggestions on how to modify the parameters
are also made from the error charts. In the following we verify the conclusions with the
macroscopic level comparison. The verification results show that all conclusions deduced
from the microscopic method are reasonable. Most of all, a parameter set with smaller error
in the microscopic evaluation always has a better performance at the macroscopic level.
Finally, we discuss the possible quantitative descriptions of a model with the microscopic
method.

The method is defined at the trajectory level, therefore its effectiveness is the same in
different scenarios. The evaluation is conducted many times along one trajectory, hence, we
can get rich information from one trajectory. Because of the simulation and the experiment
is synchronized at the beginning of each evaluation, the result is insensitive to the length of a
trajectory. The result has four directions, based on which qualitative conclusions can be ob-
tained from the trajectory level comparison. Moreover, the final result E is a comprehensive
evaluation of the precision, the stability and the symmetry of a model.

We suggest that the microscopic method and the trajectory database can be used as
a standard criterion to give qualitative and quantitative evaluations of a model. In the
future, we will try to establish an evaluation database of continuous pedestrian dynamic
models based on the method. The database will be composed of experimental trajectories
with graded densities and various scenarios, and evaluations results of different models with
these trajectories.

A. Appendix A: Methods of the trajectory smoothing, resampling and the ve-
locity solving

A trajectory is smoothed by averaging the positions of adjacent time steps:

n+K1/2
smt {rsmt smt _ Z ,rom n — 0 1 2 } (16)

,m)

n—Ky/2

where K7 is the number of the time step for the smoothing. The sampling result of the
trajectory ¢ is:
jres = {rsmt|n =0,N,2N, ...}, (17)

where N is the interval between two resamplings. The velocity of a time step (v(n)) depends
on the future movement of the pedestrian:

rim g, = T 1)

vi(n) = Ky

where ¢ is the duration of the time step in the original trajectory.
In this paper, K1 = N = Ky = 1/§. It means that all of the intervals (the smooth
interval, the resampling interval and the velocity solving interval) are 1 s.
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