000866638 001__ 866638
000866638 005__ 20210130003549.0
000866638 0247_ $$2doi$$a10.1002/mrm.27787
000866638 0247_ $$2ISSN$$a0740-3194
000866638 0247_ $$2ISSN$$a1522-2594
000866638 0247_ $$2altmetric$$aaltmetric:61113131
000866638 0247_ $$2pmid$$apmid:31095776
000866638 0247_ $$2WOS$$aWOS:000483917000024
000866638 037__ $$aFZJ-2019-05717
000866638 082__ $$a610
000866638 1001_ $$0P:(DE-Juel1)156164$$aLiao, Yupeng$$b0$$ufzj
000866638 245__ $$aCorrelation of quantitative conductivity mapping and total tissue sodium concentration at 3T/4T
000866638 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2019
000866638 3367_ $$2DRIVER$$aarticle
000866638 3367_ $$2DataCite$$aOutput Types/Journal article
000866638 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1574328347_25088
000866638 3367_ $$2BibTeX$$aARTICLE
000866638 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866638 3367_ $$00$$2EndNote$$aJournal Article
000866638 520__ $$aPurposeTo investigate the correlation between electrical conductivity and sodium concentration, both measured in vivo, in the human brain.MethodsConductivity measurements were performed on samples with different sodium (Na+) and agarose concentrations using a dielectric probe, and the correlation between conductivity and Na+ content was evaluated. Subsequently, brain conductivity and total Na+ content maps were measured in 8 healthy subjects using phase‐based MREPT and sodium MRI, respectively. After co‐registration and spatial normalization to the 1 mm 152 MNI brain atlas, the relationship between conductivity and tissue sodium concentration (TSC) was examined within different brain regions.ResultsThe conductivities of agarose gels increased linearly with NaCl concentration, while remaining almost independent of agarose content. When measured in healthy subjects, conductivities showed positive correlation with total tissue sodium concentration (R = 0.39, P < 0.005). The same trend was found in gray matter (R = 0.36, P < 0.005) and in white matter (R = 0.28, P < 0.05).ConclusionTissue conductivity shows a positive correlation with total sodium concentration. Conductivity might serve as a novel technique to visualize the total tissue electrolyte concentration, although refinements in the consideration of e.g., tissue water content, would be necessary to improve the quantitative value.
000866638 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000866638 588__ $$aDataset connected to CrossRef
000866638 7001_ $$0P:(DE-HGF)0$$aLechea, Nazim$$b1
000866638 7001_ $$0P:(DE-Juel1)157753$$aMagill, Arthur W.$$b2
000866638 7001_ $$0P:(DE-Juel1)156200$$aWorthoff, Wieland A.$$b3
000866638 7001_ $$0P:(DE-Juel1)131765$$aGras, Vincent$$b4
000866638 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b5$$eCorresponding author$$ufzj
000866638 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.27787$$gVol. 82, no. 4, p. 1518 - 1526$$n4$$p1518 - 1526$$tMagnetic resonance in medicine$$v82$$x1522-2594$$y2019
000866638 8564_ $$uhttps://juser.fz-juelich.de/record/866638/files/Liao_et_al-2019-Magnetic_Resonance_in_Medicine.pdf$$yRestricted
000866638 8564_ $$uhttps://juser.fz-juelich.de/record/866638/files/Liao_et_al-2019-Magnetic_Resonance_in_Medicine.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866638 909CO $$ooai:juser.fz-juelich.de:866638$$pVDB
000866638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156164$$aForschungszentrum Jülich$$b0$$kFZJ
000866638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156200$$aForschungszentrum Jülich$$b3$$kFZJ
000866638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b5$$kFZJ
000866638 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000866638 9141_ $$y2019
000866638 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000866638 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2017
000866638 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866638 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866638 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866638 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866638 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866638 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866638 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000866638 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000866638 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000866638 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866638 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000866638 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000866638 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000866638 980__ $$ajournal
000866638 980__ $$aVDB
000866638 980__ $$aI:(DE-Juel1)INM-4-20090406
000866638 980__ $$aI:(DE-Juel1)INM-11-20170113
000866638 980__ $$aI:(DE-82)080010_20140620
000866638 980__ $$aUNRESTRICTED