000866644 001__ 866644
000866644 005__ 20230111074221.0
000866644 0247_ $$2doi$$a10.1002/hbm.24537
000866644 0247_ $$2ISSN$$a1065-9471
000866644 0247_ $$2ISSN$$a1097-0193
000866644 0247_ $$2Handle$$a2128/28500
000866644 0247_ $$2pmid$$a30761676
000866644 0247_ $$2WOS$$aWOS:000683897100007
000866644 037__ $$aFZJ-2019-05723
000866644 082__ $$a610
000866644 1001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b0$$eCorresponding author$$ufzj
000866644 245__ $$aPerfusion weighted imaging using combined gradient/spin echo EPIK: Brain tumour applications in hybrid MR-PET
000866644 260__ $$aNew York, NY$$bWiley-Liss$$c2021
000866644 3367_ $$2DRIVER$$aarticle
000866644 3367_ $$2DataCite$$aOutput Types/Journal article
000866644 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1635151275_28701
000866644 3367_ $$2BibTeX$$aARTICLE
000866644 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866644 3367_ $$00$$2EndNote$$aJournal Article
000866644 520__ $$aAdvanced perfusion‐weighted imaging (PWI) methods that combine gradient echo (GE) and spin echo (SE) data are important tools for the study of brain tumours. In PWI, single‐shot, EPI‐based methods have been widely used due to their relatively high imaging speed. However, when used with increasing spatial resolution, single‐shot EPI methods often show limitations in whole‐brain coverage for multi‐contrast applications. To overcome this limitation, this work employs a new version of EPI with keyhole (EPIK) to provide five echoes: two with GEs, two with mixed GESE and one with SE; the sequence is termed “GESE‐EPIK.” The performance of GESE‐EPIK is evaluated against its nearest relative, EPI, in terms of the temporal signal‐to‐noise ratio (tSNR). Here, data from brain tumour patients were acquired using a hybrid 3T MR‐BrainPET scanner.GESE‐EPIK resulted in reduced susceptibility artefacts, shorter TEs for the five echoes and increased brain coverage when compared to EPI. Moreover, compared to EPI, EPIK achieved a comparable tSNR for the first and second echoes and significantly higher tSNR for other echoes.A new method to obtain multi‐echo GE and SE data with shorter TEs and increased brain coverage is demonstrated. As proposed here, the workflow can be shortened and the integration of multimodal clinical MR‐PET studies can be facilitated.
000866644 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000866644 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x1
000866644 588__ $$aDataset connected to CrossRef
000866644 7001_ $$0P:(DE-Juel1)157838$$ada Silva, Nuno André$$b1
000866644 7001_ $$0P:(DE-Juel1)141899$$aYun, Seong Dae$$b2
000866644 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.24537$$n13$$p4144-4154$$tHuman brain mapping$$v42$$x1065-9471$$y2021
000866644 8564_ $$uhttps://juser.fz-juelich.de/record/866644/files/Manuscript.pdf$$yOpenAccess
000866644 8564_ $$uhttps://juser.fz-juelich.de/record/866644/files/hbm.24537.pdf$$yOpenAccess
000866644 8564_ $$uhttps://juser.fz-juelich.de/record/866644/files/Manuscript.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866644 909CO $$ooai:juser.fz-juelich.de:866644$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866644 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b0$$kFZJ
000866644 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141899$$aForschungszentrum Jülich$$b2$$kFZJ
000866644 9130_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000866644 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000866644 9141_ $$y2021
000866644 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866644 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000866644 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM BRAIN MAPP : 2017
000866644 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866644 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866644 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866644 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866644 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866644 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866644 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000866644 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866644 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000866644 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866644 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000866644 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000866644 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000866644 980__ $$ajournal
000866644 980__ $$aVDB
000866644 980__ $$aI:(DE-Juel1)INM-4-20090406
000866644 980__ $$aI:(DE-Juel1)INM-11-20170113
000866644 980__ $$aI:(DE-82)080010_20140620
000866644 980__ $$aUNRESTRICTED
000866644 9801_ $$aFullTexts