001     866644
005     20230111074221.0
024 7 _ |a 10.1002/hbm.24537
|2 doi
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a 2128/28500
|2 Handle
024 7 _ |a 30761676
|2 pmid
024 7 _ |a WOS:000683897100007
|2 WOS
037 _ _ |a FZJ-2019-05723
082 _ _ |a 610
100 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Perfusion weighted imaging using combined gradient/spin echo EPIK: Brain tumour applications in hybrid MR-PET
260 _ _ |a New York, NY
|c 2021
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1635151275_28701
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Advanced perfusion‐weighted imaging (PWI) methods that combine gradient echo (GE) and spin echo (SE) data are important tools for the study of brain tumours. In PWI, single‐shot, EPI‐based methods have been widely used due to their relatively high imaging speed. However, when used with increasing spatial resolution, single‐shot EPI methods often show limitations in whole‐brain coverage for multi‐contrast applications. To overcome this limitation, this work employs a new version of EPI with keyhole (EPIK) to provide five echoes: two with GEs, two with mixed GESE and one with SE; the sequence is termed “GESE‐EPIK.” The performance of GESE‐EPIK is evaluated against its nearest relative, EPI, in terms of the temporal signal‐to‐noise ratio (tSNR). Here, data from brain tumour patients were acquired using a hybrid 3T MR‐BrainPET scanner.GESE‐EPIK resulted in reduced susceptibility artefacts, shorter TEs for the five echoes and increased brain coverage when compared to EPI. Moreover, compared to EPI, EPIK achieved a comparable tSNR for the first and second echoes and significantly higher tSNR for other echoes.A new method to obtain multi‐echo GE and SE data with shorter TEs and increased brain coverage is demonstrated. As proposed here, the workflow can be shortened and the integration of multimodal clinical MR‐PET studies can be facilitated.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a da Silva, Nuno André
|0 P:(DE-Juel1)157838
|b 1
700 1 _ |a Yun, Seong Dae
|0 P:(DE-Juel1)141899
|b 2
773 _ _ |a 10.1002/hbm.24537
|0 PERI:(DE-600)1492703-2
|n 13
|p 4144-4154
|t Human brain mapping
|v 42
|y 2021
|x 1065-9471
856 4 _ |u https://juser.fz-juelich.de/record/866644/files/Manuscript.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/866644/files/hbm.24537.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/866644/files/Manuscript.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:866644
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)141899
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Neuroimaging
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM BRAIN MAPP : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21