000866646 001__ 866646
000866646 005__ 20210130003552.0
000866646 0247_ $$2doi$$a10.3174/ajnr.A6033
000866646 0247_ $$2ISSN$$a0195-6108
000866646 0247_ $$2ISSN$$a1936-959X
000866646 0247_ $$2altmetric$$aaltmetric:59322534
000866646 0247_ $$2pmid$$apmid:30975653
000866646 0247_ $$2WOS$$aWOS:000468119900009
000866646 037__ $$aFZJ-2019-05725
000866646 082__ $$a610
000866646 1001_ $$00000-0002-9115-9548$$aSichtermann, T.$$b0
000866646 245__ $$aIncreased Water Content in Periventricular Caps in Patients without Acute Hydrocephalus
000866646 260__ $$aOak Brook, Ill.$$bSoc.$$c2019
000866646 3367_ $$2DRIVER$$aarticle
000866646 3367_ $$2DataCite$$aOutput Types/Journal article
000866646 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1574327568_25089
000866646 3367_ $$2BibTeX$$aARTICLE
000866646 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866646 3367_ $$00$$2EndNote$$aJournal Article
000866646 520__ $$aBACKGROUND AND PURPOSE: Periventricular caps are a common finding on MR imaging and are believed to reflect focally increased interstitial water content due to dysfunctional transependymal transportation rather than ischemic-gliotic changes. We compared the quantitative water content of periventricular caps and microvascular white matter lesions, hypothesizing that periventricular caps associated with increased interstitial fluid content display higher water content than white matter lesions and are therefore differentiable from microvascular white matter lesions by measurement of the water content.MATERIALS AND METHODS: In a prospective study, we compared the water content of periventricular caps and white matter lesions in 50 patients using a quantitative multiple-echo, gradient-echo MR imaging water-mapping sequence.RESULTS: The water content of periventricular caps was significantly higher than that of white matter lesions (P = .002). Compared with normal white matter, the mean water content of periventricular caps was 17% ± 5% higher and the mean water content of white matter lesions was 11% ± 4% higher. Receiver operating characteristic analysis revealed that areas in which water content was 15% higher compared with normal white matter correspond to periventricular caps rather than white matter lesions, with a specificity of 93% and a sensitivity of 60% (P < .001). There was no significant correlation between the water content of periventricular caps and whole-brain volume (P = .275), white matter volume (P = .243), gray matter volume (P = .548), lateral ventricle volume (P = .800), white matter lesion volume (P = .081), periventricular cap volume (P = .081), and age (P = .224).CONCLUSIONS: Quantitative MR imaging allows differentiation between periventricular caps and white matter lesions. Water content quantification of T2-hyperintense lesions may be a useful additional tool for the characterization and differentiation of T2-hyperintense diseases.
000866646 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000866646 588__ $$aDataset connected to CrossRef
000866646 7001_ $$00000-0002-1581-3739$$aFurtmann, J. K.$$b1
000866646 7001_ $$00000-0002-7779-5740$$aDekeyzer, S.$$b2
000866646 7001_ $$00000-0002-8516-384X$$aGilmour, G.$$b3
000866646 7001_ $$0P:(DE-Juel1)131782$$aOros-Peusquens, Ana-Maria$$b4$$ufzj
000866646 7001_ $$00000-0002-6432-6187$$aBach, J. P.$$b5
000866646 7001_ $$00000-0002-8261-5513$$aWiesmann, M.$$b6
000866646 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b7
000866646 7001_ $$0P:(DE-Juel1)162385$$aNikoubashman, Omid$$b8$$eCorresponding author
000866646 773__ $$0PERI:(DE-600)2025541-X$$a10.3174/ajnr.A6033$$gVol. 40, no. 5, p. 784 - 787$$n5$$p784 - 787$$tAmerican journal of neuroradiology$$v40$$x1936-959X$$y2019
000866646 909CO $$ooai:juser.fz-juelich.de:866646$$pVDB
000866646 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131782$$aForschungszentrum Jülich$$b4$$kFZJ
000866646 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b7$$kFZJ
000866646 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162385$$aForschungszentrum Jülich$$b8$$kFZJ
000866646 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000866646 9141_ $$y2019
000866646 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866646 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866646 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAM J NEURORADIOL : 2017
000866646 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866646 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866646 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866646 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866646 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866646 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000866646 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000866646 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000866646 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866646 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000866646 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000866646 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000866646 980__ $$ajournal
000866646 980__ $$aVDB
000866646 980__ $$aI:(DE-Juel1)INM-4-20090406
000866646 980__ $$aI:(DE-Juel1)INM-11-20170113
000866646 980__ $$aI:(DE-82)080010_20140620
000866646 980__ $$aUNRESTRICTED