001     866646
005     20210130003552.0
024 7 _ |a 10.3174/ajnr.A6033
|2 doi
024 7 _ |a 0195-6108
|2 ISSN
024 7 _ |a 1936-959X
|2 ISSN
024 7 _ |a altmetric:59322534
|2 altmetric
024 7 _ |a pmid:30975653
|2 pmid
024 7 _ |a WOS:000468119900009
|2 WOS
037 _ _ |a FZJ-2019-05725
082 _ _ |a 610
100 1 _ |a Sichtermann, T.
|0 0000-0002-9115-9548
|b 0
245 _ _ |a Increased Water Content in Periventricular Caps in Patients without Acute Hydrocephalus
260 _ _ |a Oak Brook, Ill.
|c 2019
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1574327568_25089
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a BACKGROUND AND PURPOSE: Periventricular caps are a common finding on MR imaging and are believed to reflect focally increased interstitial water content due to dysfunctional transependymal transportation rather than ischemic-gliotic changes. We compared the quantitative water content of periventricular caps and microvascular white matter lesions, hypothesizing that periventricular caps associated with increased interstitial fluid content display higher water content than white matter lesions and are therefore differentiable from microvascular white matter lesions by measurement of the water content.MATERIALS AND METHODS: In a prospective study, we compared the water content of periventricular caps and white matter lesions in 50 patients using a quantitative multiple-echo, gradient-echo MR imaging water-mapping sequence.RESULTS: The water content of periventricular caps was significantly higher than that of white matter lesions (P = .002). Compared with normal white matter, the mean water content of periventricular caps was 17% ± 5% higher and the mean water content of white matter lesions was 11% ± 4% higher. Receiver operating characteristic analysis revealed that areas in which water content was 15% higher compared with normal white matter correspond to periventricular caps rather than white matter lesions, with a specificity of 93% and a sensitivity of 60% (P < .001). There was no significant correlation between the water content of periventricular caps and whole-brain volume (P = .275), white matter volume (P = .243), gray matter volume (P = .548), lateral ventricle volume (P = .800), white matter lesion volume (P = .081), periventricular cap volume (P = .081), and age (P = .224).CONCLUSIONS: Quantitative MR imaging allows differentiation between periventricular caps and white matter lesions. Water content quantification of T2-hyperintense lesions may be a useful additional tool for the characterization and differentiation of T2-hyperintense diseases.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Furtmann, J. K.
|0 0000-0002-1581-3739
|b 1
700 1 _ |a Dekeyzer, S.
|0 0000-0002-7779-5740
|b 2
700 1 _ |a Gilmour, G.
|0 0000-0002-8516-384X
|b 3
700 1 _ |a Oros-Peusquens, Ana-Maria
|0 P:(DE-Juel1)131782
|b 4
|u fzj
700 1 _ |a Bach, J. P.
|0 0000-0002-6432-6187
|b 5
700 1 _ |a Wiesmann, M.
|0 0000-0002-8261-5513
|b 6
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 7
700 1 _ |a Nikoubashman, Omid
|0 P:(DE-Juel1)162385
|b 8
|e Corresponding author
773 _ _ |a 10.3174/ajnr.A6033
|g Vol. 40, no. 5, p. 784 - 787
|0 PERI:(DE-600)2025541-X
|n 5
|p 784 - 787
|t American journal of neuroradiology
|v 40
|y 2019
|x 1936-959X
909 C O |o oai:juser.fz-juelich.de:866646
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131782
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)162385
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AM J NEURORADIOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21