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Abstract

In the atmospheric boundary layer (ABL), incomplete mixing (i.e., segregation) results in
reduced chemical reaction rates compared to those expected from mean values and rate
constants derived under well mixed conditions. Recently, segregation has been suggested
as a potential cause of discrepancies between modelled and measured OH radical
concentrations, especially under high isoprene conditions. Therefore, the influence of
segregation on the reaction of OH radicals with isoprene has been investigated by modelling
studies and one ground-based and one aircraft campaign.

In this study, we measured isoprene and OH radicals with high time resolution in order to
directly calculate the influence of segregation in a low-NO, and high-isoprene environment in
the central Amazon basin. The calculated intensities of segregation (I;) at the Amazon Tall
Tower Observatory (ATTO) above canopy top are in the range of values determined at a
temperate deciduous forest (ECHO-campaign) in a high-NO, low-isoprene environment, but
stay below 10 %. To establish a more general idea about the causes of segregation and their

potential limits, further analysis was based on the budget equations of isoprene mixing ratios,
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the variance of mixing ratios, and the balance of the intensity of segregation itself.
Furthermore, it was investigated if a relation of I to the turbulent isoprene surface flux can
be established theoretically and empirically, as proposed previously. A direct relation is not
given and the amount of variance in I, explained by the isoprene flux will be higher the less
the influence from other processes (e.g., vertical advection) is and will therefore be greater
near the surface. Although ground based values of I, from ATTO and ECHO are in the same
range, we could identify different dominating processes driving I;. For ECHO the normalized
variance of isoprene had the largest contribution, whereas for ATTO the different transport
terms expressed as a residual were dominating. To get a more general picture of I; and its
potential limits in the ABL, we also compared these ground based measurements to ABL
modelling studies and results from an aircraft campaign. The ground based measurements
show the lowest values of the degree of inhomogenous mixing (< 20 %, mostly below 10 %).
These values increase if the contribution of lower frequencies is added. Values integrated
over the whole boundary layer (modelling studies) are in the range from 10 % to 30 % and
aircraft measurements integrating over different landscapes are amongst the reported. This
presents evidence that larger scale heterogeneities in land surface properties contribute
substantially to I.

1. Introduction

Reaction rates of atmospheric trace gases can deviate from the ones derived in laboratory
experiments because the reactants might not be well mixed (i.e., they are segregated).
Mixing in the atmospheric boundary layer (ABL) is provided by shear-generated turbulence
or by convection. Therefore, mixing of the reactants will depend on the turbulence properties
of the airflow. To achive well-mixed conditions, the mixing has to overcome the influences of
heterogeneous source and sink distributions of the reactants due to fluxes into and out of the
reaction volume and due to chemical reactions inside the volume. Thus, chemistry and
turbulent properties need to be considered together (e.g., Seinfeld and Pandis, 1997;
Finlayson-Pitts and Pitts Jr., 1986; Lamb and Seinfeld, 1973; Donaldson, 1975). Most
models consider chemical reactions of first, second, and third order in a way that mean
mixing ratios ¢; and their products (e.g., ¢; X ¢; for a second-order reaction) together with the
rate constant k;; appear in the rate equations, as determined from laboratory experiments
(e.g., Finlayson-Pitts and Pitts Jr., 1986). In the atmosphere, conditions often occur where
the reactants are not well mixed with significant fluctuations, ¢/ and ¢/, compared to their

mean values, ¢; and ¢;. For those cases, also additional terms like variances and

covariances, ch’ have to be considered (e.g., O’Brien, 1971; Lamb and Seinfeld, 1973; Shu,
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1976; McRae et al., 1982; Donaldson and Hilst, 1972; Donaldson, 1975; Lamb and Shu,
1978). Here, c¢; and ¢; denote temporal fluctuations around the mean mixing ratios, ¢; and ¢;,
of compounds i and j, respectively. If for a second-order reaction the product of the mean

mixing ratios fulfills the relation € x & > ¢/c/, the influence of turbulent fluctuating terms in

the reaction rate equation k;; (c_l-><c_j+ch) can be neglected for the prediction of either

mean value, c; or ¢; (e.g., Danckwerts, 1952; Shu, 1976).

If this inequality is not valid, the balances of higher order moments (e.g., variances,
covariances, triple correlations) have to be calculated either by the model or by analysis of
experimental data. The quotient of the covariance term and the product of the means is
commonly called the intensity of segregation, I =(ch/c_ixc_j) (e.g., Danckwerts, 1952;
Damkodhler, 1957) and is applied to describe the degree of inhomogeneous mixing for
second order chemical reactions. For this Reynolds-type ensemble averaging of properties of
a fluid, the influence of fluctuations on chemical reactions is described by additional
differential equations to determine the higher-order moments (e.g., Donaldson and Hilst,
1972; Donaldson, 1973, 1975; Shu, 1976). Another way to approach this problem is to find
the exact properties of the probability density functions of turbulent quantities for each
reactant (e.g., O’Brien, 1971; Bencula and Seinfeld, 1976; Lamb and Shu, 1978).

The balance equation approach was also applied for the analysis of field measurements of
the 0; — NO — NO, system (e.g., Lenschow, 1982; Vila - Guerau de Arellano et al., 1993;
Kramm and Meixner, 2000) and to study segregation of the reaction of isoprene (1S0) with
the hydroxyl radical (OH) (Dlugi et al., 2010, 2014). This concept not only considers the
determination of first- and second- order moments (mean values, covariances and variances)
but at least requires the additional knowledge of the third moments — e.g., the skewness, Sk
(Stull, 1988; Sorbjan, 1989; Shu, 1976) - to quantify influences of so-called coherent
structures (e.g., Katul et al, 1997, 2006; Raupach et al., 1996; Wahrhaft, 2000) on
segregation (e.g., Dlugi et al., 2014).

Modelling studies on segregation for these chemical systems were mainly performed for
more complex atmospheric mixtures (e.g., Schumann, 1989; Verver et al., 1997; Vinuesa
and Vila-Guerau de Arellano, 2005; Krol et al, 2000; Ouwersloot et al., 2011; Ebel et al.,
2007; Patton et al., 2001; Kim et al., 2016; Li et al., 2016; Gerken et al., 2016) than could be
considered by the analysis of field data (Dlugi et al., 2010, 2014; Kaser et al., 2015; Kramm
and Meixner, 2000). Recently, the influences of shallow cumulus on transport, mixing and
chemical reactions in the ABL were modelled for the reaction isoprene + OH (e.g., Vila-
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Guerau de Arellano et al., 2005; Ouwersloot et al., 2013; Kim et al., 2016; Li et al., 20186).
The dynamics and mixing by shallow cumulus clouds are shown to enhance I; also near the
surface at least in qualitative agreement with the scarce experimental findings (Dlugi et al.,
2014).

For a characterization of mixing and reaction conditions in atmospheric flows, the Damkéhler
number, Da., the quotient (z./z.) between the characteristic timescales of turbulent or
convective mixing processes, t;, and the specific chemical reaction, 7., of a compound (e.g.,
ISO or OH), is chosen (e.g.,, Vila Guereau de Arellano and Lelieveld, 1998). This
dimensionless number allows a classification of I, as a function of nearly inert (Da, « 1),
slow (0.05 < Da, < 0.5), fast (0.5 < Da,. <5), and very fast (Da. > 5) bimolecular reactions
with respect to one of the two reactants. Damkéhler numbers can be formulated in different
ways in space and time, depending on the formulation of the turbulence scales (e.g.,
Donaldson and Hilst, 1972; Molemaker et al., 1998; Koeltzsch, 1998). Therefore, the actual
numerical values of Da, in various works found in the literature may differ systematically
(e.g., Schumann, 1989; Sykes et al., 1994; Verver et al.,, 1997, 2000; Li et al., 2016).
Nevertheless, the ranking of reactions being most influenced by inhomogeneous mixing is
consistent within each choice of scales for the calculation of Da,.

Some authors applied an additional scaling which uses the turbulent flux of a species

(e.g.,m) at the surface to find a description for the reaction and inhomogeneous mixing
(e.g., Schumann, 1989; Verver et al., 2000) and added a second Damkohler number, Day, to
describe the influence of the surface flux on this ranking concept. This approach requires that
for a specific reaction (e.g., ISO + OH) the segregation intensity, I, shows a clear functional
dependence on the corresponding turbulent flux. We will therefore discuss this concept
together with the theoretical framework applied to the analysis of the field data in Section 3.
In Sections 3.4 and 4.1 we search for theoretical and empirical relations between the
turbulent flux of isoprene and the related segregation intensity to test this hypothesis,
because some studies suggest that spatially inhomogeneous distributions of emission fluxes
significantly influence — in a direct relation - the segregation intensity (e.g., Krol et al., 2000;
Pugh et al., 2011; Ouwersloot et al., 2011). The results from the aircraft measurements
presented by Kaser et al. (2015) are interpreted in this way as well. They even suggest a
“feedback loop — the higher the isoprene flux the larger the I;". The analysis of ECHO 2003
by Dlugi et al. (2014) showed that such an influence of spatially variable isoprene fluxes can
be detected also in the results from measurements near canopy top, but needs a more
specific interpretation (section 3.4).
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One of the chemical reactions that has been studied experimentally is that of isoprene with
OH radicals. Isoprene is an important biogenic compound with a global annual emission of
535 Tg/a to 595 Tg/a (Sindelarova et al., 2014; Guenther et al., 2012). If also the
dependence on soil moisture stress is considered an annual emission of about 374 —
449 T is estimated (Muller et al., 2008). Isoprene is emitted by various plants (Kesselmeier,
2001; Kesselmeier and Staudt, 1999; GUnther et al., 1995). The emission source strength
and related fluxes into the atmosphere are mainly controlled by plant physiological factors,
absorbed radiation and leaf temperatures (e.g., Kesselmeier, 2001; Guenther et al., 2006;
Ciccioli et al., 1997; Doughty, Goulden, 2008). After emission, isoprene is mixed by
turbulence and convection in a cloud topped ABL (e.g., Heus and Jonker, 2008; Ramos da
Silva et al., 2011; Ouwersloot et al., 2013), while being transported with the mean wind field.
Isoprene reacts with OH (e.g., Finlayson-Pitts and Pitts Jr., 1986), the so called detergent of
the atmosphere, which is formed by photochemical reactions and recycled in radical chain
reactions (e.g., Finlayson — Pitts and Pitts, 1986; Rohrer et al., 2014). It is a fast reacting
compound with 7. < 1s. Therefore, the hydroxyl radical (OH) is only locally determined by
chemical sources and sinks which are influenced by the solar actinic flux, ozone (0;), water
vapor and additional reactants like HO,, NO,, NO, €O, CH, and various volatile organic
compounds (VOCs). We may consider this chemical system in the way that isoprene (with
7. > 300s) is transported through this locally variable field of OH. Furthermore, the variability
of the isoprene source strength in time and space (e.g., Ciccioli et al., 1997) — which may be
described by the turbulent surface flux of isoprene W - as well as of chemical sources and
sinks of OH can contribute to the development of non-homogeneously mixed conditions
with I, < 0 (e.g., Krol et al., 2000; Ouwersloot et al., 2011; Dlugi et al., 2014). For the further
analysis, the Damk&hler number, Da,, is used as a scale for the chemical reactant isoprene
(150) with respect to the active species (OH).

This chemical system and its behavior in the ABL were analyzed by model studies for
isoprene in a complex chemical mixture (Verver et al., 2000; van Stratum et al., 2012; Kim et
al., 2016; Li et al., 2016). Patton et al. (2001) performed a Large Eddy Simulation (LES)
study for isoprene in a mixture with CO to assess the influences of emission, mixing and
reaction on the intensity of segregation, I, in the roughness sublayer (Raupach et al., 1996)
within and directly above an idealized deciduous forest. All analyses found I; < 0 near the
bottom — e.g., canopy top - of their models, which is caused by an anti-correlation between
the reacting compounds.

Ouwersloot et al. (2011) also applied LES to model mechanically and thermally generated

turbulence above a differentially heated land surface representing alternating forest and
5
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savanna areas. This inhomogeneity of land surface properties (and of canopy surface
temperatures and surface sensible heat fluxes, H) is related to variations in buoyant
production as well as inhomogeneous source distributions for isoprene, both of which have
an impact on the variability of the isoprene flux and the mixing ratio (e.g., the variance) and,
therefore, on I for the isoprene — OH reaction. Comparable to the study by Patton et al.
(2001), the modelled chemical reactions are for low NO, conditions as found for example in
the Amazonian region (e.g., Rohrer et al., 2014) - where one major sink for OH is isoprene
(e.g., Andreae et al., 2015; Karl et al., 2007; Nolscher et al., 2015; Yarez- Serrano et al,
2015).

In their LES simulation, Kim et al. (2016) found that I is a function of the NO, mixing ratio.
They point out that values with I, < —0.1 both for NO, < 0.2 ppb and NO, > 1ppb are
reached in a cloud layer. Positive values of I; are calculated in the cloud layer for NO, =~
0.5 ppb. In the mixed layer of the ABL Kim et al. (2016) found I; < —0.1 only for NO, = 3 ppb.
Their surface layer (SL) results are nearly independent from the NO, mixing ratios with
—0.05 < I; < 0.0 for a homogeneous isoprene flux. In contrast, near the surface Ouwersloot
et al. (2011) found significantly larger values for low NO,- conditions, but in a region with
inhomogeneous distributions of the surface sensible heat flux H, and the isoprene emission

flux W In their Fig. 13 they show a case with I, = —0.195 and H = 0.15 Kms™! for an
inhomogeneous distribution of the isoprene emission flux. But most of their results for
homogeneous source distributions are in the range I; < —0.1 and are at least qualitatively
comparable to the results of Kim et al. (2016). The experimental values determined above
canopy top during the ECHO 2003 field study with NO, > 1 ppb are in the range —0.16 < I <
0 with the largest values determined for convective conditions in a cloud topped ABL (Dlugi
et al. 2010, 2014).

Pugh et al. (2011) applied results from the field study ECHO 2003 (Dlugi et al., 2010) to
estimate a potential influence of segregation for the reaction IS0 + OH on results of another
field study above tropical rain forest in Indonesia, although the level of NO,- compounds
significantly differs from those at the deciduous forest of the ECHO site. For the Amazonian
region, Butler et al. (2008) estimated that values of —0.6 < I; < —0.3 are needed to interpret
their chemical measurements with an aircraft in the upper ABL during the GABRIEL field
campaign. But, after an extended error analysis, these authors estimated an average value
of I; = —0.13, about the largest value later on given by Dlugi et al. (2010, 2014) from direct
measurements near the surface or by Ouwersloot et al. (2011) in their model study.
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Dlugi et al. (2010, 2014) analyzed highly time-resolved (< 0.2 Hz) data from measurements
of isoprene and OH during the ECHO 2003 field experiment above a deciduous forest
canopy in a polluted area (e.g., NO, > 1ppb). They could specify influences of
inhomogeneous source distribution, turbulence, and cloud-induced convective downward
and upward transport on I, in the range —0.16 < I; < 0 for the reaction between isoprene
and OH . In addition, they found for their experimental data that the time variation of the

covariance between isoprene (c;) and OH(c;), d(ch)/dt = S.0v, Was significantly smaller

than all other terms in the prognostic equation for ch’ This allowed them to derive a

diagnostic equation for I (based on the stationarity condition S, = 0) to separate influences
of the complex interactions of mixing processes as a residuum (RE;5) from measurable
quantities in the flow, like the normalized variance of isoprene, nvar(iS0). Using this
concept, they were able to compare their experimental findings with model results given by
Quwersloot et al. (2011) and Patton et al. (2001). They verified that nvar(ISO) and RE;; both
can be related to the influence of coherent motion near canopy top in a way that these terms

correlate with the generalized correlation coefficient A ,, for the turbulent transport of

nvar(I1S0) as formulated by Katul et al. (1997) and Cava et al. (2006) by the third-order
cumulant expansion method (CEM). I; correlates not only with the (normalized) variance of
isoprene but also with the turbulent flux of variance, and, therefore also well with the quantity
(nvar(ISO) — RE;;) (Dlugi et al. 2014). In contrast, they found little to no correlation between

I, and the corresponding correlation coefficient M,, for the turbulent transport of the isoprene

flux w'c; given by CEM. We refer to this result in Section 4.2.2.

Recently Kaser et al. (2015) published their results from the NOMADSS campaign on
segregation in the system isoprene + OH from airborne measurements in the ABL for a flight
level of about z/z; = 0.4 (z = height above ground; z; = ABL height). They determined a
significant spatial variability of I; during two flights (RF13, RF17). In addition, they presented
LES model simulations in the range of —0.35 < I; < —0.06 with a qualitative agreement with
their experimental results near z/z; ~ 0.4 but significantly larger values up to about Iy = —0.4
near the canopy top level compared to results from the other studies. Furtheron, they also

suggest that a statistically significant relationship between the turbulent flux of isoprene w'c{

and I exists. In addition, they stated that the covariance ch’ is directly proportional to I,

which implies that the product of mean mixing ratios c; x ¢; is of minor influence.

In the following Section 2 we summarize the three field studies for which experimental data
on segregation for the reaction isoprene + OH are available. These studies are ECHO 2003,

7



Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1325

Atmospheric

Manuscript under review for journal Atmos. Chem. Phys. Chemistry
Discussion started: 17 May 2019 and Physics
© Author(s) 2019. CC BY 4.0 License. Discussions

264
265
266
267

268

269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

296
297

298

ATTO 2015 (see Sections 2.2, 3. and 4.), and NOMADSS (Kaser et al., 2015). In our
discussion in Section 3 we present the theoretical frameworks, which serve as a rule on how
to perform atmospheric measurements of this kind and to analyze the data. As introduction

we give the definition of I, and explain the different influences of the mean mixing ratios of
1S0(c;) and OH(t;), their related standard deviations (o;,0;) and variances (cTZ, c?), their

covariance (ci¢j) and the isoprene flux (w'c). For each of these quantities a prognostic

balance equation (also named budget equation in the literature) allows us to analyze the
impact of different processes on their behavior in time and space (e.g., Stull, 1988; Sorbjan,
1989; Seinfeld and Pandis, 1997). These processes are represented by the different terms of
the balance equations as described for the exchange and transport of momentum, heat, and
moisture for example by Monin and Obukhov (1954), Businger (1973), McBean and Miyake
(1972), Panofsky and Dutton (1994), Stull (1988), Sorbjan (1989) or Garrett (1992) and for
reacting compounds for example by Shu (1976), McRay et al. (1982), Lenschow (1982) or
Ebel et al. (2007). This kind of analysis is done by solving these equations numerically in a
model or by calculation of the different terms from direct measurements and order of

magnitude estimates based on literature values, as also done in our study.

First, we perform such calculations for the balance of the mean mixing ratio ¢; based on the
data from ECHO 2003 and ATTO 2015 (Section 3.2). Secondly, we discuss the balances of

the variances, as they can be directly related to the covariance, c/c/, and to the segregation

intensity, I, (Section 3.3). In the following Section 3.4 we focus on the balance of the
isoprene flux, W to analyze if a direct relation to I; can be established by a term of this
equation, as suggested, for example, by Kaser et al. (2015). Finally, the balance of the
segregation intensity, I, itself is evaluated based on measurements. In Section 4 we
compare results from earlier modelling studies and direct field measurements near canopy
top to each other and to the findings given by Kaser et al. (2015) from experiments in the
ABL. The results from experiments in the atmosphere and modelling studies are compared
also to obtain some empirical relation between the segregation intensity I; and the
Damkdhler number Da,.

2. The Field Studies
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2.1. ECHO 2003

The ECHO intensive field campaign was performed from 17 June to 6 August 2003 on the
grounds of the Reserch Center Jilich, Germany. Three towers were installed in a mixed
deciduous forest with the dominating tree species, beech, birch, cak and ash, and a mean
canopy height k. of 30 m. The vertically integrated one-sided leaf area index in a radius of 50
m around the main tower varied between LAI = 5.5 and LAI = 5.8. The towers were aligned
parallel to the main wind direction (Schaub, 2007) with the main tower in the center. The
west tower was located 220 m from the main tower, and the east tower was located 120 m
away. This allowed the investigation of the influence of the spatial distribution of biogenic
volatile organic compound (BVOC) sources (isoprene, monoterpenes) on measured fluxes
(e.g., Spirig et al., 2005). The field measurements were supported by the physical modelling
of this forest site in a wind tunnel (Aubrun et al., 2005), also to estimate the influences of
spatial heterogeneity of emission sources on measured fluxes of some BVOCs.

During the ECHO campaign, a feasibility study was performed on 25 July (day 206 of year
2003) to measure fluxes and higher order moments (e.g., covariances) not only for isoprene
but also for the first time for OH- and HO,- radicals. The data from these measurements were
analyzed in detail for the time period between 09:00 and 15:00 CET. This period was
characterized by cloudy conditions with a moderate horizontal wind velocity variation and
slightly unstable to neutral stratification above the canopy. Broken cloud fields caused
significant fluctuations of all radiation quantities above canopy. The air temperature, T,, at
the measuring height z; = 37 m increased from 19 to 26.5 °C, while the specific humidity,
4. increased only slightly from 09:00 to 12:00 CET from 8.3 g kg~! up to about 9.5 g kg™
and then decreased to about 8 g kg™ (Dlugi et al., 2010, 2014).

All measurements reported in the present paper were obtained at the main tower (Dlugi et al,
2010; 2014). The main tower with a height of 41 m, and the main measuring platform
at zp = 37 m, was equipped with nine sonic anemometers/thermometers (METEK, instrument
type: USA-1; time resolution 10 Hz) between 2 m and 41 m, and eight psychrometers (dry
and wet bulb temperatures) at the same heights, except at 41 m. A time resolution for air
temperature, T,, and specific humidity, g,, of 15s could be achieved. Radiation quantities
and photolysis frequencies were obtained by radiometers directly above the canopy (h, =
30m) with a time resolution of 3s (Bohn et al., 2004; Bohn, 2006; Bohn et al., 20086).

Occasionally vertical profiles were measured.



Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1325

Atmospheric

Manuscript under review for journal Atmos. Chem. Phys. Chemistry
Discussion started: 17 May 2019 and Physics
© Author(s) 2019. CC BY 4.0 License. Discussions

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

The OH and HO, radical concentrations were measured by Laser Induced Fluorescence (LIF;
Holland et al., 1995, 2003) on a vertically movable platform. For the reported measurements
it was positioned above the canopy, with the inlet at 37 m height (Kleffmann et al., 2005). A
proton-transfer-reaction mass spectrometer (PTR-MS) for measurements of isoprene,
monoterpenes, methyl vinyl ketone (MVK), and methacrolein (MACR) was installed at the
ground, using a sampling line to collect air at the height of the ultrasonic anemometer
(Ammann et al., 2004; Spirig et al., 2005). The distances of the inlets of the PTR-MS and LIF
instruments from the ultrasonic anemometer measuring volume were 0.45 m and 0.6 m,
respectively. This spatial arrangement requires corrections to the calculated fluxes as
outlined by Dlugi et al. (2010) and Dlugi et al. (2014). The time series of OH (and HO,) and
isoprene are available with a resolution of 0.2 Hz for the calculation of higher order mixed

moments (e.g., covariances).

2.2. ATTO 2015

The ATTO-IOP1 was conducted at the Amazon Tall Tower Observatory (Andreae et al.,
2015) in November 2015 (from 1 to 23 November) under El Nifio conditions (Jiménez-Mufioz
et al., 2016; Wang and Hendon, 2017). Measurements were made on an 80 m walk up tower
at a height of z; = 41 m. The average canopy height, A, in the surroundings of the tower is
around 35 m. The vertically integrated one-sided leaf area index (LAl) around the tower was
about 6. The land cover in the main wind direction is primary rain forest with an extension of

several hundred kilometers. During daytime, cumulus clouds develop regularely after noon.

Isoprene mixing ratios were measured by a PTR-MS at 1 Hz resolution. Air was drawn from
the measurement height (41 m) by a 3/8-inch opaque fluorinated ethylene propylene (FEP)
tubing at a rate of about 10 | min™. The line was isolated and heated. The inlet was protected
by a 5 um pore size Teflon filter. The time delay of the measured signal was corrected by
maximizing the covariance between fluctuations of an open path H,0 analyzer (Licor 7500,
Licor, USA) in front of the inlet and the signal of the water clusters inside the PTR-MS.

Atmospheric OH and HO, were measured during 16 — 23 November 2015 using a modified
version of the HydrOxyl Radical measurement Unit based on fluorescence spectroscopy
(HORUS) instrument (Martinez et al., 2010; Hens et al,, 2014). The laser system was
mounted on a cantilever balcony assembly at 36 m and the detection systems were mounted
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on another cantilever balcony at 40 m along with instruments to measure radiation, isoprene,

and water vapour. The balcony faced to the north-east, the direction of the prevailing wind.

The measurements of atmospheric OH was achieved by measurements of the total OH
signal, i.e., the signal produced due to fluorescence at 308 nm of atmospheric OH as well as
of OH produced in the system during its travel time from the inlet nozzle to the detection
volume, which we call background OH. The difference between the total signal and the
background signal is thus a measure of atmospheric OH. The background OH can be
measured by scavenging of the atmospheric OH with propane. The propane was introduced
through an inlet pre-injector (IPI) mounted on top of the inlet nozzle (Novelli et al., 2014; Mao
et al., 2012; Hens et al.,, 2014). During previous campaigns using the IPl system, the
propane flow was switched on and off for two minutes each, providing a 4 minute time
resolution for measurements of atmpospheric OH. For this campaign, we used an additional
detection unit for simultaneous measurements of total and background OH in order to
increase the time resolution of atmospheric OH measuremets. The detection unit for
background OH was placed 55 cm to the east of the detection unit for total OH (Figure1).

Fig. 1 Set up of instruments and HORUS- inlets at zz = 41 m at the ATTO tower during ATTO 2015.
An inlet pre-injector is mounted on the inlet to the right side of the picture.

For measurement of HO, a second detection cell was mounted in series with the detection
cell for total OH (without propane addition). NO was added in between the two measurement
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cells to convert HO, to OH, which is then detected in the second cell (Hens et al., 2014;
Mallik et al., 2018).

The laser system consisted of a tunable dye laser which was pumped by a diode-pumped
Nd:YAG laser (Navigator | J40-X30SC-532Q, Spectra Physics) pulsing at 3 kHz. The 308 nm
output laser radiation was split in a 3:1:3 ratio using beam splitters, and channeled through 5
m optical fibers into the three detection cells to measure total OH, HO, and background OH.

Ambient air was drawn into the inlets through critical orifices with pinhole sizes of 0.9 mm
each into the respective detection cells below. The pinhole of the nozzles were 120 cm
above the platform base at 40 m above ground level and about 10 m above the canopy. The
internal pressure in the two OH detection cells, 4.5 + 0.1 hPa, was maintained by two
separate but identical pump systems mounted below the tower and connected to the
respective detection systems by 50 m long (50 mm ID) tubes. The first pump system was
used to draw in air for the total OH and HO, measurements and the second one for
background OH.

The background OH was measured by titration with 12.5 cm® (STP) of pure propane in a
carrier flow of 7000 cm® (STP) synthetic air. The scavenger amount was just sufficient to
scavenge off ~95% of atmospheric OH as determined from propane titration experiments on-
site. Initially, IPl systems were mounted on top of both the detection units, to be able to
alternate measurements of of total and background OH measurements between the two units
and characterize the losses occurring due to the IPI systems. The IPI systems were
connected to a blower via a t-piece and individual valves adjusted for a flow of about 140 Ipm
of ambient air from the top of each IPI. The wall losses in the IPl were periodically
determined by physically dismounting the IPI for 5 minutes during measurements during
different times of the day.

For the measurement phase (19 - 23 Nov, 2015; day no: 323 (midday) - 327), the IPI| was
mounted only on the detection unit for background OH, providing us with a high time
resolution for atmospheric OH measurements. In this phase, the scavenger was injected
continuously resulting in measurements of total OH and background OH at a high time
resolution of 15 s. The difference between these two signals gives a measure of the
atmospheric OH at the same time resolution.

Calibration of the instrument for OH and HO, measurements was achieved by measuring the
signals generated by known amounts of OH and HO, in a calibrator setup (Martinez et al.,

12



Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1325

Atmospheric

Manuscript under review for journal Atmos. Chem. Phys. Chemistry
Discussion started: 17 May 2019 and Physics
© Author(s) 2019. CC BY 4.0 License. Discussions

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

457

458
459
460
461
462
463
464
465
466
467
468

2010). The calibrator was mounted on top of the OH inlet without the IPl. Known amounts of
OH and HO, were produced by irradiating different concentrations of humidified air with 185
nm radiation produced by a pen ray Hg lamp. The actinic flux density of the Hg lamp (Pen-
ray line source, LOT-Oriel, Germany) used for the photolytic radical production was
determined before and after the campaign using the actinometry method by N,0 photolysis
(Martinez et al., 2010; Hens et al.,, 2014). The different OH and HO, mixing ratios were
produced by mixing different combinations of humidified and dry air flows using mass flow
controllers. The water mixing ratio in humid air stream was measured by a LICOR CO2/H20-
Analyzer (Li-7000).

2.3. NOMADSS - Field Study 2013

The Nitrogen, Oxidants, Mercury and Aerosol Distributions, Source and Sinks (NOMADSS)
project was performed within the Southeast Atmosphere Study. NOMADSS consisted of
three projects, one was the Southern Oxidant and Aerosol Study (SOAS). The results
discussed by Kaser et al. (2015) are from flights conducted within SOAS by the National
Center for Atmospheric Research’s C130 aircraft in June / July 2013 in the central and
southeast U.S. The complete planetary boundary layer budget of isoprene was measured
(Kaser et al., 2015). Within these studies also the intensity of segregation for the reaction
between isoprene and OH (Eq. (4)) was determined.

Isoprene was measured by a PTR-MS with a repetition rate of > 1 Hz, during research flights
RF13 and RF17. This time resolution is considered to be high enough to perform eddy

covariance calculations for the isoprene flux w'c/ and the covariance c/c/ in Eq. (1) (e.g., Karl
et al., 2013). In addition, a Trace Organic Gas Analyzer (TOGA) (e.g., Hornbrook et al, 2011)
was applied also for measuring isoprene mixing ratios with a time resolution of about 2

minutes.

The HO,- radicals, OH and HO,, were detected using an ion chemical ionization mass
spectrometer (Hornbrook et al, 2011; Mauldin Il et al., 2003) as reported by Kaser et al.
(2015; in text S3 of the supplement). Data for “OH were collected every 30 seconds”, so that
a time resolution of 0.033 Hz was obtained. To generate OH data with higher time resolution
Kaser et al.,(2015) “used spectral similarity conditions to reconstruct the spectral high-
frequency loss based on concomitant fast isoprene and ozone measurements” both with time

resolutions of 1s, up to 5 Hz sampling rate (see also Fig. S4 in Kaser et al., 2015).
13
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In addition, observed and modelled isoprene surface fluxes were compared. The segregation
intensity was modelled by the LES- code described by Patton et al. (2003) with the chemistry
as given by Patton et al. (2001). Simulations were performed for homogeneous and
heterogeneous (or inhomogeneous) land surface conditions, also to compare to results given
by Ouwersloot et al. (2011).

3. Theoretical Concepts for Data Analysis

3.1. Introduction

Non-homogeneous mixing of chemically reactive compounds (i, j) causes a reduction of their
mean reaction rates, R_l-j = k;; X ¢; X ¢j, derived for homogeneous mixed conditions. Here, k;;
is the reaction rate constant, c;, ¢; are the specific mixing ratios, and the overbar denotes

time averaged mean values (e.g., Seinfeld and Pandis, 1997).

As discussed before, for a second order reaction the influence of non-homogeneous mixing
is commonly described by the intensity of segregation, I;. This quantity is formulated in the
sense of Reynolds (1895) and extended by Richardson (1920) for compressible fluids with all
quantities a being a combination of their ensemble averages @& and the deviations @ from
that @. Here we replace @ by their timely averaged means @ and @ by the deviation a’ from @
(see Monin and Yaglom, 1971; Sorbjan, 1989 or Higgins et al., 2013 for further discussion).
Therefore @ = @ + a’ and with the extension for mixing ratios, ¢; and c;, the reaction rate, R;;,
with the intensity of segregation, I;, is given by (e.g., Astarita, 1967, O’Brien, 1971;
Danckwerts, 1952; Donaldson, 1975; Lamb and Seinfeld, 1973; Shu, 1976):

[
CiC]

R,'J=kUXC_lXa<1+ >=R_U(1+15) (1)

]
In general, a covariance a’f’ of two quantities a, f can be written as the product of the
related standard deviations, o, and og, times the correlation coefficient, ryg. For ¢;, ¢; this
expression reads (Eq. (2))

ch=rijx0ix0j, (2)
at least if both quantities have probability density functions comparable to normal or log-

normal distributions (Sachs and Hedderich, 2008). Combining Eq. (1) and Eq. (2) results in
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503 Iy =7 i_ii:_j (3)
504  with the covariance replaced by the product of terms on the right hand side of Eq. (2).
505  Here results only of reaction (4)
OH +isoprene (ISO) > products (4)
506 are discussed, i.e., between a secondary compound, ¢; (OH), and a primary, emitted
507  compound, ¢; (ISO). The depletion of the reacting compounds in Eq. (4) results in an anti-
508  correlation between ¢, and c;. Gonsequently the covariance (Eqg. (1) - Eq. (2)) and the
509  correlation coefficient, 7, (Eq. (2) - Eq. (3)) become negative, which results in I; < 0 in Eq.
510 (1) and Eq. (3). Therefore, the reaction rate, R;;, in Eq. (1) will be smaller than in the
511 homogeneously mixed case, (R_l-j), as measured, e.g., under laboratory conditions to
512 determine k; (e.g., Finlayson Pitts and Pitts, 1986).
513
514  Compounds like isoprene, but also other hydrocarbons, €0, CH,, NO, or NO, are mainly
515  emitted near the surface of the Earth. Other reactive compounds like OH (but also C,H, 0, or
516  03) are produced in the volume of the atmosphere in the course of chemical cycling (e.g.,
517  Seinfeld and Pandis, 1997; Rohrer et al., 2014).
518
519 In our discussion on the intercomparison of results from field and modelling studies for
520 reaction Eq. (4) and of the influence of segregation, we have to analyze the multiple
521 influences of the terms in Eq. (1) and Eq. (3) on I;. Note that the turbulent vertical fluxes of
522 compounds like ¢; near the surface can be related to their emission rates (e.g., Guenther et
523  al, 2006; Muller et al, 2008) at the surface E; (e.g., from plants). E;q is related to the turbulent
524  surface flux w'c]|, = E;, and — in analogy to Eq. (2) — may be written as
525 Eig = Wc] = fiye, X 0y X 0; (5)
526  with the vertical wind velocity component w. If one formally replaces the standard deviation
527 o; (e.g., forisoprene) in Eq. (3) by o; from Eq. (5), a relation where I, is expressed also as
528  function of the turbulent flux of compound ¢; (Eqg. (6)) can be formulated.
529 IS=@X£@X@ (6)
1 2 3
530 Eq. (B) is composed of three terms:
531 (1) the ratio of the two correlation coefficients, (2) the ratio of the turbulent flux of compound
532 ¢ (here: ISO) and the product of the standard deviation of the vertical wind velocity
533  component with the time average of the mixing ratio of ¢;, and (3) the normalized standard
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deviation of compound ¢; (here: OH). All these quantities can be directly determined from

high frequency measurements (e.g., ¢, ¢j, cl-’c]f, 0y, 05, Wi, wic, ...).

In models, prognostic (or balance) equations for any of these quantities (e.g., ¢;, cj, ch’ O;,

Ojs W Fq ...) are solved to predict their behavior in time and space and their interactions.
In this work, these quantities are calculated from direct measurements, or their order of
magnitude is estimated to be able to determine which processes in the turbulent, convective
atmospheric boundary layer (ABL) have the greatest influence on I..

Therefore, we need to consider how the I; for reaction Eq. (4) could be related to the mean
mixing ratios and the fluxes of the reactants (w'c{, w'c/), the variances (c?, c?) or other

terms in the prognostic equations. We also need to briefly revisit the derivation of the
diagnostic equation for I; given by Dlugi et al. (2014), in order to clarify if a relation between

the isoprene flux (w'c;) and I; can be established by the theoretical concept and to define

the conditions under which experimental findings might also show such a relationship, i.e., a

significant correlation between I; and Td The following analysis is based on data from the
field studies ECHO 2003 and ATTO 2015 and is compared to modelling results by
Quwersloot et al. (2011) and Patton et al. (2001) and also to findings described by Kaser et
al. (2015) from the NOMADSS campaign.

We will examine the second-order equations that describe basic physical and chemical
processes, which control the time behavior of the different input variables (mean mixing
ratios, variances, co-variances) of Eq. (1) and Eq. (3) that are used to determine the intensity
of segregation and finally the terms in the diagnostic equation for I; itself. The product of the
mean mixing ratios is the denominator in Eq. (1) and Eq. (3). The balances of the mixing
ratios are described in the following section 3.2. The standard deviations (o;, o;) in Eq. (3) or
Eqg. (5) are given by the square roots of the variances. In Section 3.3 we therefore discuss
which terms influence the variances of isoprene (or o;) and of OH . In Section 3.4 we also

estimate terms of the balance of w'c] (i.e., the isoprene flux) and their relationship to Eq. (6).

Finally various influences of different processes (chemistry and mixing) on the balance of I
are discussed in Section 3.5.

3.2. Results for the Balance of the Mixing Ratios
16
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The balance of the mean mixing ratios, ¢;, c;, is commonly analyzed by the corresponding
prognostic equations (e.g., Stull, 1988). Here we shortly summarize the results discussed by
Dlugi et al. (2014) on the balance of ¢; = IS0 and (where needed) on ¢; = OH. The balance

for ¢; is given by

o — 0 [— — = — =, =

S==C=——|u x¢; +upc; | — ki | ¢; X + cicj (7
ot B\~ L Tk N J
= DMF DTF MR TR

with (x4, x4, x3) = (x,y.2) for the coordinate axes, (u;,u,,u3) = (x,y.z) for the wind velocity
components along these coordinate axes, and the other notation used as in Eq. (1) - Eq. (4).
In Eq. (7) as well as the following equations, Einstein’s summation convention is used. Dlugi
et al. (2014) discussed the application of Eq. (7) for the ECHO 2003 study. The same
concept is applied for the analysis of ATTO 2015.

The range of numerical values for the first term of Eq. (7) — commonly named storage term S
- is given together with the computed results for MR and TR (MR = mean (time averaged)
reaction rate between both compounds and TR = reaction rate of correlated turbulent
fluctuating compounds (c{, ¢/)) together with the residuum given by DMF = divergence of the

advective flux with the mean flow (u;) and DTF = divergence of the turbulent flux (Tc{) in
Table 1. Here k;; is the reaction rate constant with an average value of k;; = 2.3 ppb~'s™* for
the reaction between isoprene and OH in the temperature range between 290 K and 300 K
for both field studies. An averaging time interval for both field studies (ECHO 2003, ATTO
2015) of 10 minutes is selected to always fulfil conditions of stationarity during cloudy
conditions at both field sites, as also discussed by Dlugi et al. (2010; 2014).

Tab. 1 The range of magnitude for all terms of Eq. (7) for isoprene in ppb s for ECHO (25 July 2003)
and ATTO (22 November 2015) with DMF+DTF determined as residuum.

Term ECHO 2003 ATTO 2015
s (-0.8101.2)10° | (-1.3t0 6)-10°
MR (1 t07)10* (1109.5)10"
TR (010 7)-10° (010 8)-10°
DMF +DTF | (-0.51t0 1.8)-10% | (-0.9t0 7)-10°

This analysis of data, for the isoprene balance from two field studies above the canopy top,
shows that the term S (Eq. (7)) is balanced mainly by the divergence of the fluxes with a
contribution of the mean reaction rate, MR, by about 10% or less and with TR < 0.1 MR
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(Table 1). During ATTO 2015, turbulent flux measurements for isoprene at height z; = 41m
were performed. In addition, the related flux divergence is estimated based on
measurements during ECHO 2003 proportional to the measured vertical gradient of the
isoprene mixing ratio and the turbulent sensible heat flux divergence.

The term

o x T T T
DMF_ukxaxk+C‘xaxk (8)

is either calculated as a residuum (Table 1) or it can be estimated from the measured values
at zz and the vertical isoprene gradient. This latter method allows finding additional

controlling parameters for ¢;, ¢;. The upward directed vertical turbulent fluxes of isoprene

(emission flux) are in the range 0 <m< 0.3 ppbms~t (25 July 2003) for ECHO and
0< w’_c{ < 1ppbms~! (22 November 2015) for ATTO. Note that for a mean upward directed
vertical velocity w = 1073m s~1 (e.g., Stull, 1988), the mean vertical advective flux is in the
range 103 <w-c; <2 -102ppbms~1 for ATTO and smaller by up to an order of
magnitude for ECHO. The accuracy of vertical velocity measurements during ECHO 2003 for
the METEK USAT1 ultrasonic anemometer is about 0.005m s~ (Dlugi et al., 2010; 2014) and
for ATTO 2015 (CSAT3) it is about 0.01 ms~'. If W reaches values above 0.1m s~ - for
example during convective conditions - the fluxes with the mean flow become larger than the
turbulent fluxes. Such conditions were observed during the case study of ECHO 25 July,
2003 (Dlugi et al., 2014) and also during the ATTO experiment on 22 November, 2015.
Therefore, also the divergence of the mean flow (DMF) may be equal to or even larger than
the divergence by the turbulent components (DTF) in Table 1. Measured values of DTF for
isoprene from an aircraft campaign in California (different environment) are in the range of
2 —3-107* ppb s~ with surface fluxes of the order of 0.3 ppb m s~ (Karl et al., 2013) while
Su et al. (2015) reported surface fluxes around 1 ppb m s~1 in the NOMADSS area. Note that
the emission flux rate, E;y, enters as the lower boundary condition if Eq. (7) is integrated
along the z-coordinate. E;, represents the surface flux, w'c]|,, as w = 0 at leaf surfaces (e.g.,
Kramm, 1995; Maller et al., 2008). The flux divergence and not the flux itself controls ;. The
sign of the divergence terms can be positive or negative. Therefore, only a change in
dynamic conditions from convergence to divergence in the wind field with constant E;; may

significantly change S and potentially also MR and TR.

As a consequence, the surface flux, E;o, the spatial distribution of the mean mixing rations, ¢;
and ¢;, but also of wind velocity components, (i, v, w), are important for the time behavior of
the mixing ratios in the atmosphere and near the canopy top. The balance of ¢; above

canopy top is only given by the chemical sinks and sources because mixing and advection
18
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on a spatial scale above 1m?2 are not relevant for a compound with . < 1s and the terms
DMF and DTF are zero. But compounds influencing the production or consumption of OH are
advected to the measuring point and influence the magnitude and variability of S, MR, and
TR.

Additionally, the segregation intensity, I;, (Eq. (3)) is influenced by the standard deviations o;
and o;. Patton et al. (2001) referred to the scalar variance budget and showed that second

order reactions may act to destroy, but also to produce, variance of isoprene (67 = cTZ). We

will therefore also discuss the balance of the variance in the following section 3.3.

3.3. Results for the Balance of the Variance

The analysis of terms of the balance equation of the covariance ch’ calculated from

measurements during ECHO 2003 suggests that the normalized variance of isoprene can
significantly influence I for the reaction of isoprene with OH (Dlugi et al., 2014). This agrees
with earlier results of Patton et al. (2001) from LES modelling for an idealized forest, and,
therefore, needs further consideration. Vinuesa and Vila-Guerau de Arellano (2005)
introduced diagnostic equations for the variance of reactants in a CBL model and
successfully predicted I as function of height for a reaction according Eq. (4). The balance
equation for the variance of ¢; - here for a divergence free wind field for simplification - reads
(e.g., Stull, 1988, Sorbjan, 1989)

J— a - Jd — a
2 2 Y - 1, a2 —
3G U X 7 Ci +2Xu ¢ X TG + T Wie " € +Rypr + 28,4, =0 9)
—_—
Svar Apar GPyqr TTyar

The first term denotes local storage of variance (S,,,), the second term describes advection
of spatial gradients of variance by the mean wind (4,,,) while the third term is a production
term caused by turbulent motions (turbulent fluxes of ¢;) in a field with a mean gradient of ¢;
and is often called gradient production term (GP,,,). Term four describes the turbulent
transport of variance (TT,,), term five the chemical reactions (R,,,) (see Eq. (10)) and term
six is molecular dissipation (&,,,). The analyses of Schaub (2007), Aubrun et al. (2005), and
Spirig et al. (2005) suggest that during ECHO 2003, isoprene is at least partly advected to
the main tower from nearby trees (see also: Dlugi et al., 2014). Therefore, for the ECHO
2003 case, horizontal and vertical advection by the mean wind field, as described by the
second term, A,,,., may have significantly influenced the local mixing ratio ¢; and the

variance.
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669

670 It was shown by model calculations by Schumann (1989), Patton et al. (2001), and Vinuesa
671 and Vila-Guerau de Arellano (2005) that chemical reaction terms may be as large as other
672  dynamic terms. The reaction term R, in Eq. (10) reads

673

674 Ryar = —2kyj| 2 X G+ cjc] x T + cleic] | +] x cic] (10)

I i i

675 if a reversible reaction c; + ¢; — ¢, (e.g., by photolysis of a product c;, with photolysis rate J)
676  is possible. The fourth term in Eq. (10) does not apply for a reaction like OH + isoprene.

677

678  If stationarity conditions (S, = 0) are considered, according to the experimental findings,
679  which showed that this term sometimes is much smaller than others, another relation is given
680 by the combination of Eq. (9) and Eq. (10). In such case the variance cTZ (occurring in term 1

681  of R,4,) can be related to the sum of all other terms in a diagnostic form by

12 1 [N ad a 12 [P
4= I X — u X — = u ¢ Epar — ki | T X c c cjcic; 11
682 ¢ T Up € X o cl + =y e . 2 7 Uk 2 4 gpar ij + ¢;cic (11a)
GPoar Apar TTyar mn m

683 A form for the vertical coordinate (z) only reads

2 1 7 =~ 108,27

12 — [P 2 — k.. [P
684 ¢ = —[w'c/ X+ c+ wxacl +Zawc + Epar — kij cxcc +¢icici |- (11b)
- _,_/ ~——
GPZ,VLIT AZ,V[J.T TTZ,VLIT u ui

1/2 N _
685 In Eq. (B) the standard deviation for isoprene o; = (Ci'Z is replaced by w'c/ - (r¢, * 0w) !
686  according to Eqg. (5) to formally relate I; to the turbulent isoprene flux. Here the variance is

687 related in an additive form to the turbulent flux in GB,,, and to the covariance c ¢ in I, (Eg.

688 (1)) by term II. Note that for a non-reactive scalar with R, ., = 0 such diagnostic relations
689  (Eq. (11a), Eq. (11b)) cannot be derived!

690

691  An order of magnitude estimation can be performed for all terms in Eq. (9), Eq. (11a), and
692 Eq. (11b) to quantify which terms may have the largest impact on the variance. This
693  calculation is based on results given by Dlugi at al. (2010, 2014) for ECHO 2003 and
694  provided by Noélscher et al. (2016), Yanez-Serrano at al. (2015), and our own measurements
695  (Section 2) for ATTO 2015 (Table 2).

696 1. The term (kijxc_j)_l is the chemical reaction time scale, 7., (with the average
697 kij=23ppb~'s7'; see section 3.2). For reaction Eq. (4) with 107° < [0H] <
698 5-10~* ppb this term is in a range of about 43.200 s (12h) to 650 s (0.18h). R, (Eq.
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(9)) is not larger than 1073 ppb? s~ for ECHO 2003 and 3 -10~* ppbh? s~1 for ATTO
2015 (22 November). On average the terms in Table 2 have to be multiplied by

(ki X T)~" ~ 900 s for ECHO 2003 and by 1900 s for ATTO 2015.

The term GP,,, is the product of the turbulent flux components and the spatial
gradients of the mean isoprene mixing ratio, ¢;. The upward directed vertical turbulent
fluxes of isoprene are in the range 0.02 ppb m s~! to 0.6 ppb m s~ (ECHO 2003) and
Oppbms~! to 1ppbms™1 (ATTO; 22 November 2015). The measured vertical
gradients of isoprene at the ECHO site are 0.01 ppbm™" to 0.05 ppb m~! and at the
ATTO site 0.01ppbm™1 to 0.07 ppb m™! both for 10:00 — 16:00 LT and upward
directed fluxes (see also: Nélscher et al., 2015; Yanez-Serrano at al., 2015). Note
that large fluxes are sometimes also related to smaller gradients and smaller fluxes to
larger gradients. Therefore a range of 8-107* < GB,,, < 1073 ppb? s~ for ECHO
2003 and of 1073 < GP,,, <3-1073 ppb? s~ for ATTO 2015 (November 22) is
estimated.

For ECHO 2003, lateral and vertical advection of the isoprene mixing ratio ¢; (DMF
and DTF) are calculated to estimate the divergence of the fluxes in Eqg. (7) (Table 1
and Dlugi et al., 2014). On average, the variance is cTZ = 0.42 ppb? and only larger
by about 10% for increasing isoprene mixing ratios caused by horizontal advection as
discussed by Dlugi et al. (2014). Vertical advection decreased ¢; to t; < 0.4 ppb but
also decreased the variance to an average of cTZz 0.13 ppb? in the downward

transported air mass. With the average surface value being cTZ = 0.42 ppb? and the

value in the overlying part of ABL being c?= 0.13 ppb?, we estimate the origin of
these air volumes to be around 300 — 400 m above ground (calculated from the
difference in specific humidity and temperature). For an average w = —-04ms™!
from measurements for these conditions, this term reaches values of about A, ,,, =

4,5 -10"*ppb? s~ for the ECHO 2003 case.

For ATTO we obtain cTZ ~ 5.2 ppb? (o; ~ 2.5 ppb) for mean mixing ratios c; ~ 7 ppb
after noon with comparable w and percentage changes of variance during
downdrafts. Therefore, this term is estimated to be of the same magnitude during
ATTO 2015 as for ECHO 2003. The horizontal advection term for ECHO 2003 can be
estimated with w; = 2m s~ and Ac? = 0.04 ppb? from measurements at a distance
of about 125 m between the west tower and the main tower (Dlugi et al., 2010; 2014)
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to be Ay a0 = 8-107*ppb? s~1. The observed change of variance during horizontal
advection for ECHO 2003 is small. If we assume comparable conditions for the ATTO
field site a magnitude of the horizontal advection of Ay, ~ 107 3ppb? s71 is

determined.

For ECHO 2003, the vertical turbulent transport of isoprene variance is calculated

from measurements as w’_cl’z <10 2ppb?ms~!. The analysis of terms of the
variance balance equations for potential temperature and of isoprene on day 200 —
206 of ECHO 2003 shows, that TT,,, for both quantities 8 and IS0 are proportional to
each other. We assume that the percentage vertical change of TT,,, is comparable to
the change of the same term for temperature variance also on day 206 (25 July
2003), when the ECHO 2003 case study on segregation (Dlugi et al., 2010; 2014)
was performed, and obtain TT,,, =~ 5-10"*ppbh? s~1. With the same relation we
estimate TT,,, < 10™3ppb? s~ for ATTO 2015 (25 November 2015).

For the ECHO 2003 case the covariance in term II (Eq. 11a, 11b) is in the range

0<

ch’| < 3-10"5pph? (see also Fig. 12 in Section 4.2.1 and Fig. 8 in Dlugi et al.,

2014) with the average mixing ration ¢; = 0.7 ppb. Therefore, for the ECHO 2003
study, term II is smaller than 2 - 10~%ppb? s~* and term Il is < 10~%ppb? s~! (see
also Fig. 12 in Dlugi et al., 2014). Both terms are comparable in magnitude during
ATTO 2015 (November 22, 2015). Table 2 summarizes these estimates.

Molecular dissipation (Sorbjan, 1989) is often determined by

Eq = Va (j—)2
for any quantity a (v, = kinematic molecular diffusivity for a in air). For the ECHO
2003 case and for a =c¢; =150, the kinematic molecular diffusivity is of order
10~5m?s™! and the gradient of fluctuations is about 1072pphm~' from
measurements on days 200 — 203, 2003 (see above) (Dlugi et al., 2014). Therefore,

an order of magnitude estimate is ,q, = 10 2ppb? s~1. Even for a gradient 10° times

larger (e.g., of about 1 ppbm™1), we get g,,, < 10 *ppb? s~1.

These results show that conditions exist above canopy top where the gradient
production, GP,,,., becomes the largest term in the variance balance. Then the

magnitude of cTZ is mainly determined by GPB,,, but with some significant contribution

of variance advection A,,,. and TT,,, (see Table 2), if Eq. (11a), Eq. (11b) are
22
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769 approximately valid. In Section 4, we will discuss these findings together with the
770 question if I; can be simply expressed by a proportionality to the turbulent isoprene
771 flux, w'c].
772
773 Tab. 2 The estimation for the magnitude of terms in the diagnostic equations (Egs. 11a, 11b) for the
774 isoprene variance during ECHO 2003 (25 July, 2003) and ATTO 2015 (25 November, 2015) in
775 [ppb?s71].
776 Term ECHO 2003 ATTO 2015
GBar | 8-10"%t0 1073 107310 31073
Apvar ~8-107* assumedto be ~ 1073
Asvar | ~45-107* ~45-107*
assumed to be < 1073
TToar ~5-107*
(see text)
1 <4-107° <4-107°
I <10°° <10°°
777
778
779

780 3.4. Results for the Balance of the Isoprene Flux

781

782 The balance of the isoprene flux is discussed in comparison to experimental results from the
783  field (ECHO 2003: Dlugi et al., 2010, 2014; ATTO 2015: see also Section 4). As an example,
784  we mainly focus on results from the ECHO 2003 campaign but also refer to ATTO 2015.

785

786  The vertical turbulent fluxes of reactive compounds like isoprene (ISO) and OH varied with
787  time during 25.07.2003 (DOY 206) of ECHO 2003 (Dlugi et al., 2010). Eq. (12) describes the
788  behavior of the vertical flux (without the influence of advection with the mean flow velocity)
789  for a component i and has different terms besides the reaction term R,; (e.g., Patton et al.,
790 2001, Verver et al., 2000).

d —— — a5 —_— g 1 T
791 Zwicl=—w2xZZ 4+ T xclgl —Zclw'w —=xcl 1R, — 2e,,; (12)
at B 3z, 6y, [ P P Lgz W W
Swi i i iii v v vi
92 Ry = —kiy| G x wici +¢ X w'e; + w'ci) (13)
i i 11
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Here, g is the acceleration of gravity, 8, is the virtual potential temperature, p is the air
pressure. The reaction term in Eq. (13) is composed of the product of mean mixing ratios
with vertical fluxes (I: of OH; II of ISO) and of the turbulent transport of the covariance — the
numerator of I; of both reactants (see Eq. 1). All terms in Eq. (13) can be calculated from
measurements, while the other terms in Eq. (12) can be estimated as discussed in the

following.

For the reaction ISO + OH (Eq. 4) the following order of magnitude estimation for terms in Eq.
(13) shows that most terms cannot be neglected a priori.

- The first term (I) in Eq. (13) is the product of the mean concentration of isoprene (in
the range of 0.1 — 2.5 ppb for ECHO 2003 and 0.3 — 18 ppb for ATTO 2015 (Section
2) with the turbulent flux of OH (in the range of about 1075 —5- 1075 ppbm s~ ) for
both field experiments. The turbulent OH flux is often set to zero (e.g., Kaser et al.,
2015), although the numerical value is significant. This flux is the result of the in-flux
and out-flux of other chemical compounds which act as sinks and sources in a small
volume of the order < 1 m?® where the 0H radical is locally detected. Due to its short
lifetime (< 1 sec) OH is just transported on scales of a few centimeters. Considering a
mean value of k;; = 2.3 ppb~'s~* for reaction Eq. (4) this first term (I) varies in a

range of 4-107% — 2.3-1072 pph m s~2.

- The mean OH mixing ratio for ECHO 2003 is between about 10™*ppbh and 5-
10~* ppb (with higher values up to 7 - 10~*ppb) and the turbulent isoprene flux varies
between about 0.02 ppbm s~ and 0.6 ppb ms~1 (Spirig et al., 2005; Dlugi et al.,
2010). This results in 107° ppbm s~2 to 4.2 - 107° ppb m s~2 for the second term (I1)
in Eq. (13). This result is comparable to the ATTO 2015 case. The turbulent isoprene
fluxes from other field studies are comparable in magnitude (e.g., Eerdekens et al.
2009).

- The third term (I/II), the turbulent transport of the numerator of I; (e.g., Dlugi et al.,
2014), is of order of 6-1075ppbms~'. This is in the upper range (6-107° —
61075 ppb m s72) of the second term and within the lower part of the range of the
first term. These findings will be discussed again when the storage term on the left
side of Eqg. (12) and R,,; are compared.
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In the balance equation for the determination of the flux of isoprene (Eq. (12)) the first term

on the right side (i) is composed of the vertical gradient and the variance of the vertical

velocity component w.

Taking results from the vertical gradients of isoprene at the ECHO site (e.g., Schaub,
2007; Ammann et al., 2004), the gradients vary in the range 0.01 — 0.25 pph m™!
while the average variance of w is about 0.25 m? 572,

This results in 2.5-1073 - 6.2- 1072 ppb m s™2 for this term (i) commonly named
production of the isoprene flux when there is a momentum flux in a flow field with a
mean isoprene gradient. This movement across a vertical gradient of ¢; is related to

fluctuations in w as well as in ¢;.

The second term on the right (ii) relates the correlation between isoprene and vertical
potential temperature to convective up- or downdrafts. For 8, > T(kK) the covariance
varies between 0.02 ppb K and 0.2 ppb K (Dlugi et al., 2010). The quotient (g/8,,) is
on average (9.8/295) K m s~2. Therefore, the second term (ii) on the right side of Eq.
(12) is in the range 6 -107* — 6.6 - 1072 ppb m s~2. For these conditions, term one (i)
is larger than or equal to term two (ii).

The third (iii) and the fourth (iv) terms on the right side of Eq. (12) cannot be
calculated directly, because the corresponding measurements during ECHO 2003
and ATTO 2015 were performed only at one height, and, therefore, a vertical profile
for the turbulent diffusion term of the flux is only available from the ECHO experiment
on some days (see section 3.3), as also described by Dlugi et al. (2010, 2014). In
addition, high frequency pressure fluctuations are not measured directly. Both terms
can only be estimated based on measurements of the transport of heat, humidity, and
€0, from studies on other days at the ECHO site (Section 3.3). The turbulent
transport term (iii) itself is calculated from measurements (ECHO) for a height
interval between 42 m and 28 m (with the main measuring height at z; = 37 m (see
Section 2.1)) and is of the order of 10 *ppbm? s~2. Compared to the turbulent
transports of the heat flux and the turbulent kinetic energy from ECHO 2003 and
other studies (e.g., Raupach, 1988; Raupach et al.,1996), the vertical gradient of the
turbulent transport of isoprene is estimated to be of the order of
3-107° to 107° ppb m s~2. This is significantly smaller than the first and second term
of Eq. (12).
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The term (iv) is the most complicated to estimate. It redistributes ¢ within a volume
and may be replaced by 1/7 x p'(dc’/dz) if — as commonly done — p’c] is assumed
to be zero (e.g., Wyngaard, 1982). There are no experimental data available justifying
such assumption. Therefore, problems exist quantifying this term by its theoretical
derivation and the assumptions made to simplify the original term (e.g., Stull, 1988,
Sorbjan, 1989) as well as by the experimental difficulties related to determine reliable
values of p’. Here, two different approaches are applied to estimate the magnitude of
this term. The first applies measurements of dc;/dz and combines them with data on

p' from literature.

Different measurements of p’ in canopies (e.g., Launder, 1978; Wyngaard, 1982;
Shaw et al., 1990) showed that pressure fluctuations between about 0.1 — 15 Pa are
detected compared to mean values p ~ 1000 hPa. The mixing ratio fluctuations, ¢,

are in the range of about 0.1ppb for ECHO 2003. For ATTO 2015 short time
fluctuations of the isoprene mixing ratio larger by up to a factor of 15 are detected.
This results for ECHO 2003 in values below 5-10"*ppbms~! if a maximum
correlation coefficient |r,s.| = 0.6 between p’' and dc//dz as also given for
momentum transfer for r,, is assumed (Kaimal and Finnigan, 1994). For ECHO 2003
this term (iv) is estimated in the range of numerical values (< 10™* ppb m s~1) for the
turbulent transport term (iii) (e.g., Stull, 1988; Sorbjan, 1989). For ATTO 2015, this

term is larger, but < 7- 10 ppbm s~ 1.

The second approach applies an expansion by Launder (1978), using the Poisson
equation for 1/p x p'(dc'/dz), which relates this term to a sum of three terms with the
dominant term given by a, - (w’c{/r) with the closure constant in the range 2.5 <

a; < 5.0 (Lang and Bradley, 1983). Here the time scale 7 is used according to the
mixing length concept evaluated by Poggi et al. (2004) and applied by Cava et al.
(2008) for measuring heights z/h. > 0.75 with a; = 2.9. This approach results in a
range of 1073t0 5-10 3ppbm s~! and is up to one order of magnitude larger than
the result obtained by the first approach.

The dissipation term ¢, (vi) can be estimated according to Stull (1988) from the
covariance of gradients of w' and ¢’ times the sum of kinematic molecular
diffusivities. This results in ¢,,. < 6-10"8ppb m s~ for the data sets applied by Dlugi
et al. (2014). Therefore, this term is smaller than the other terms in the air volume
above canopy top.
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The storage term S,,; is directly calculated from field data (Fig. 2). As a result, the storage
term S,,; on the left side of Eq. (12) is comparable in magnitude to R,,; and the residuum RF

composed of all terms (i) - (vi) on the right side without R,,; (see Fig. 2).
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Fig. 2 The storage term of the balance of the flux, the chemical reaction term R,,;, and the residuum,
RF, (see text) in Eq. (12) for the conditions during ECHO 2003 (25.07.2003) at height
zg = 37 m at the main tower.

A net balance exists with S,,; = RF + R,,; for the isoprene flux. Often S,,,; is small compared to
the other terms, which compensate each other. But for convective conditions during 25 July
2003, between 11 — 13 CET, S,,; becomes comparable in magnitude to the other terms (e.g.,
Dlugi et al., 2014). Therefore, even if advection with the mean flow is not discussed here, the
influence of turbulent and convective transport and mixing expressed by term RF is
comparable to R,; in magnitude. The role of term (vi) remains uncertain as long as an
evaluation of the Launder (1978) expansion for isoprene is missing, as it was done for heat
and moisture by Lang and Bradley (1983).
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Note that Eq. (12) describes the variability with time of the isoprene flux, w'c]. If we assume
that S,,; is always smaller than other terms — e.g., neglect some larger values in Fig. 2 and

use S,; = 0 — adiagnostic equation can be formulated as an estimate for w'c;.

ey 1 [ 1 T
wic] =—=RF —Z=xw'c; —=xw'c{c; . (14)
L kijXc; cj J cj L)

As mentioned above the flux w’cj is often assumed to be zero. In this case the flux of

isoprene would be determined by RF ( = sum of four terms (i) - (iv)) and term (v) in Eq. (12)
multiplied by 7. = (k;; -c_j)_l, the chemical time scale for this reaction (e.g., Patton et al.,
2001; Finlayson-Pitts and Pitts Jr., 1986) if term (I) in Eq. (13) can be neglected as
discussed above. Therefore, a direct relationship between w'c! and ch’ or even with I is not
given by Eq. (12) or Eq. (14), but a relation with the turbulent transport of the covariance

(w'c{c) or with the four terms in RFF can be established by Eq. (14).

3.5. The Balance of the Segregation Intensity

A diagnostic balance equation for I; was described and discussed by Dlugi et al. (2014).

Their analysis is based on the balance equation of the covariance ch’ which is the

numerator in Eq. (1) for I;. A short summary of this concept is given in the following. This
balance equation reads:
Scon =%Tc;= —TPl, — TPOHy, — Ay — Ay =TTy — D + Ry; (15)
with the residual term RES (see Eq. (10) in Dlugi et al., 2014 )
—RES = —TPl;, — TPOH,, — Ayy — Az =TT, = D (16)
Scov IS the storage term; TPI, is the turbulent production by a turbulent flux of isoprene in a
spatially inhomogeneous field of OH. TPOH, is the turbulent production by a turbulent flux of
OH in a spatially inhomogeneous field of isoprene. As mentioned above, the turbulent fluxes
of OH (W'OH', along the z - coordinate) are solely caused by the influence of chemical
sources Pyy and sinks L,y of OH (Dlugi et al., 2010; 2014), because OH has a chemical life-
time toy < 1s and is not transported above a spatial scale of one meter or so in the
atmosphere. A,; is the advection of covariance by the influence of the divergence of the flow

field; A,y is the advection of covariance with the mean flow; TT;, is the turbulent transport of

the covariance c{¢/; D is the molecular diffusion term and R;; the chemical reaction term.

The magnitude of
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- Dis generally below 1078 ppbh? s~ and

- S.op is found experimentally to be below 6 - 10~ 8pph? 571,

- while all other terms are in the range 10 5ppbs™! < terms < 4-10"*ppb s~! (see
also Table 3 in Dlugi et al., 2014).

For the reaction (Eq. (4)) (IS0 + OH) during the ECHO 2003 and ATTO 2015 field studies the
storage S.,, on the left side of Eq. (15) is significantly smaller than the other terms.
Therefore, stationarity conditions (S,,,, = 0) can be applied and Eq. (15) reads

with Ry = —ki;x [(cc) x (G +G) + T x 2 + G x o +clejg] + ¢ (18)
— S——
a b c d e

Note that the covariance in Eq. (1) is given in the first term of Eq. (18), and, therefore a

diagnostic relation for ¢;¢; (outgoing from the balance of the covariance) can be formulated

based on R;;.

Dlugi et al. (2014) solved Eq. (18) for c/c/ and combined this formula with Eq. (17). This
results in Eq. (20), if for ¢; = 1 ppb (ISO) and ¢; = 10™* ppb (OH), also the relation ¢; >» ¢ is

considered with

e 12 I AT [P
Cij =T X ¢j* + cicicf + cici¢f (19)
b d e
77 1 [ 2 _ Gij 2
_Cicj_k, .FX(RESJ'-kUXCU)_EXCi —RE+?—EXC,: (20)
4 14 4 14

ij
The same order of magnitude estimation as performed for the balances of the variance and
the flux shows that only the second term (d) in C;; (Eq. (19)) contributes to the covariance
{Dlugi et al., 2014). Finally if Eq. (20) is divided by ¢; x ¢; a diagnostic equation for /; (see Eq.
(1)) is obtained:

[

I = RES cicic et _ RE.. +CH:. — 150); (21)
s kinC_iX(C_ch_j) C_iX(C_iXC_j) # B e " nvar( °
I Ir Yﬁl

Here only the numerator of the first term (I) in Eq. (21) is unknown, if measurements at one
height could be performed to study segregation as it was done during ECHO 2003 and ATTO
2015. As described by Dlugi et al. (2014) (their Table 3) most terms composing RES can be
estimated by their order of magnitude for ECHO 2003. All other terms can be directly
calculated from measurements. Note that both terms, CH;; and the normalized variance of
isoprene nvar(1S0), originate from R;; (Eq. (18)). The (normalized) variance of isoprene

was shown to correlate well with I; by experimental data analysis (Dlugi et al., 2014) and
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modelling studies (e.g., Patton et al., 2001; Vinuesa and Vila-Guerau de Arellano, 2005;
Quwersloot et al., 2011) and was therefore separated from all other terms of the chemical
term that are contained in CH;. This is because the OH mixing ratios and variances are
small compared to the isoprene mixing ratios and variances. The same analysis as for ECHO
2003 was applied to ATTO 2015 data.

At first we compare terms of Eq. (18) for ATTO 2015. The calculation of all terms (a — e) of
R;; (Eq. (18)) shows that terms a and c are dominant (Fig. 3) for ATTO 2015 as well as for
ECHO 2003 (see Fig. 12 in Dlugi et al. (2014)). Term a serves to formulate the left side of
Eg. (20). Term c¢ originates from the third term on the right side of Eq. (18), and, finally
becomes nvar(IS0); in Eq. (21).

Although term c is positive definite, other terms like term a or d in Eq. (18) are not. Therefore
R;; also becomes negative (Fig. 3). The relation between term ¢ of R;; and R;; itself for both
experiments is expressed by the presentation in Fig. 4. The error bars in Fig. 6 and Fig. 7 for
ECHO 2003 are given by the uncertainties of the covariance in I, (Eq. 1) and R;; as well as
higher moments in ¢? and CH, if the time delay between time series of I1SO and OH is
varied by up to £0.2 5. This time shift estimates the influence of wind vector variation inside
the sampling volume, as discussed by Dlugi et al (2014).
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Fig. 4 The magnitude of R; as function of term c in Eq. (18) for ECHO (25 July 2003) and ATTO (22
November 2015). Data points before noon are clumped together near zero. (The circle gives
the data point which deviates from the fit as described in the text).

The importance of the turbulent fluctuations of the isoprene mixing ratio for the magnitude of
I, as pointed out by Patton et al. (2001) and Ouwersloot et al. (2011) from their modelling
studies, is also proven by these experimental findings, as the reaction term can be well
described by (OH x var(IS0)) (Fig. 4). For |R;;| < 10™*ppb? s™* the ECHO 2003 data are
given by |R;;| = 2.15 (OH x var(IS0)) ~ k;; (OH X var(I1S0)), while the ATTO 2015 data
follow |R;;| = 0.74 (OH x var(IS0)) with the exception of one data point (circled, Fig. 4). The

deviation of the ATTO results from those for ECHO is unknown up to now.
The time behavior of all terms in Eqg. (21) for the situation during 22 November 2015 at the

ATTO tower is given in Fig. 5. For comparison, the same four terms for the ECHO 2003 case
study are shown in Fig. 6 as given originally by Dlugi et al. (2014).
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Fig. 7 The segregation intensity I as function of the difference nvar(IS0);; — RE;, according Eq.
(21) for the ECHO and the ATTO cases. (Note that the calculations of the third moments in
Eqg. (18) — Eq. (21) are performed in a way that only third order terms are selected which are
above 2¢ of the minimum value found in the data set.) The circles around some ECHO 2003
data are explained in the text.

Although the magnitudes of nvar(IS0);, and therefore RE;; - but also CH;; — differ between
the two studies by about an order of magnitude (Fig. 5, 6), the segregation intensities, I,
some meters above the canopy top are comparable in magnitude with |1 4rro| < |Isecuol- In
both studies, CH;; is significantly smaller than nvar(IS0O);; and RE;, which are both of
comparable magnitude. Therefore, I, ~ (nvar(IS0);; — RE;) in Fig. 7. The three marked
points (Fig. 7) for the ECHO 2003 case belong to two periodes of convective conditions
(black circles) and one case where a correction was applied based on the analysis of the

ogive for ¢/¢/ (red circle) as discussed in more detail by Dlugi et al. (2014) in their sections

5.3.4 and 4.2.4.

RE;; is the residuum determined by the other three terms in Eq. (21). None of these terms is
near zero for ECHO 2003 (Fig. 6) as well as ATTO 2015 (Fig. 5). We find nvar(1S0);; > RE;,
for ECHO 2003 which proves CH;; # 0 with an average value of nvar(IS0);; ~ 0.42. For
I, = —0.16 (extrapolated from the ECHO 2003 data in Fig. 7) one obtains a mean value for
nvar(IS0);s — RE;; = 0.24, which results in mean values for RE;; = 0.18 and CH;; = 0.08
according to Eq. (21) for the ECHO 2003 case. But some data points for ECHO 2003 in Fig.
7 (circles around data points) fulfill the conditions nvar(IS0);; — RE;; < I, which requires not
only CH;; < 0 but even |nvar(ISO);| < |RE;| as discussed by Dlugi et al. (2014). The term
CH;, - €.g., the triple moment in term (d) (Eq. (19)) - is either negative or positive (Fig. 5, 6).
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1103  For this ATTO case the term RE;; is always larger than nvar(IS0);;. I, is therefore dominated
1104 by this residual term (Fig. 5, 6) which describes the interactions between the turbulent flow
1105 field with the fields of both scalars.

1106

1107  Note that R;; (eq. (18); Fig. 8) increases with increasing variance of the reactants. As mixing

1108  ratios and variances of isoprene are much larger than those of OH, the standard deviation of

1109  isoprene (o; = (clT)l/2 = std(IS0)) is a main driver in the chemical terms, and, therefore,
1110  also for I; (Eg. (3)) with a correlation coefficient R = 0.91 for ECHO 2003 and R = 0.79 for
1111 ATTO 2015 (Fig. 8). This reflects the important influence of this term ¢ of Eq. (18) and of g; in
1112 Eq. (3) (Fig. 8). But the influences of turbulent transport and mixing in term RES respectively
1113  RE;; may even exceed the magnitude of nvar(iS0),, (Fig. 7). I, therefore, becomes
1114  controlled by chemical as well as dynamic and mixing processes enhancing the variances of
1115  the reactants, respectively o; (and / or ;). In addition the variation of the surface source

1116  strenghth E,; in space and time influences o;.

1117
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1119 Fig. 8 R;; (see Eq. (18)) as function of the isoprene standard deviation for ECHO 2003 and ATTO
1120 2015.
1121

1122 The quantities o;, o; and the correlation coefficient r;; from the numerator in Eqg. (3) define the
1123 magnitude of /5. The correlation coefficient r;; = r(OH,1S0) from the field increases for both
1124  cases non-linearely with increasing I; (Fig. 9). All values of r;; from experiments are found
1125  below a line |r;;| = 2.5 |I| (for —0.4 < I; < 0) and are smaller than r;; = —0.6. Note that this

1126  relation is very similar for ATTO 2015 and ECHO 2003 (Fig. 9).
1127

36



Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1325

Atmospheric

Manuscript under review for journal Atmos. Chem. Phys. Chemistry
Discussion started: 17 May 2019 and Physics
© Author(s) 2019. CC BY 4.0 License. Discussions

1128
1129
1130

1131
1132
1133

1134

1135
1136
1137

1138

1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152

Dlugi et al. (2010; 2014) discussed the influence of instrumental (white) noise on r;;. The
contribution of noise to the isoprene mixing ratio is small (e.g., Spirig et al., 2005) and only
influences o, by less than 5% for ECHO 2003 and by less than 1% for ATTO 2015. In
contrast, the signal to noise ratio of the measured mixing ratios of the hydroxyl radical is
sometimes only 3.

0.5
o arithmetic mean LES o ECHO 2003
o median LES * ATTO 2015
OO &
_,.-0‘“"‘6
= S g
8 - - | o.c. T
= M YA
) @ 0,0 * °
= o 000 ?
05 = —
o
o000
1.0 +—+——7—r—T——7T—TTF 1
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Fig. 9 The correlation coefficient in Eq. (3) between OH and isoprene for ECHO 2003 and ATTO

2015 and from the LES model for a layer of 10 m to 30 m above the surface (Ouwersloot et
al., 2011).

The o; is influenced in such case by the impact of noise on the variance and becomes larger
by up to 15%. Therefore, if the standard deviation o; increases by up to 15%, r;; in Eq. (3)
becomes smaller by this magnitude as compensation. If this estimate is applied to all data in
Fig. 9, the largest correlation coefficient from ECHO 2003 would be about r;; = —0.65. This
is still below the theoretically applied r;; = —0.7 for modelling studies (e.g., Table 3).
Ouwersloot et al. (2011) calculated r;; explicitly in their LES model and obtained medians
and arithmetic means of about r;; = —0.9 (Fig. 9) for the lowest layers between 10 m and 30
m above the surface. A significant difference exists between the correlation coefficients from
field measurenents and modelling. On the other hand the covariances (in Eq. (2)) and I (in
Eq. (1)) are rarely modified by instrumental noise as shown for the background signals of the
PTR-MS instrument and the LIF for the ECHO 2003 study. This means that these signals
have characteristics near white noise and, therefore, are not correlated (e.g., Wu et al., 2007;
Sachs and Hedderich, 2008).
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4. \Variability of Segregation Intensity

4.1. Relation between Segregation Intensity and Surface Flux

In addition to the results discussed by Dlugi et al. (2010, 2014), the segregation intensity can
be presented in terms of Eq. (6) to establish an empirical relationship to the turbulent flux of
isoprene. As mentioned before, such a direct proportionality between I; and W is stated by
Kaser et al. (2015) and others. In Section 3 (3.3; 3.4) we discussed which prognostic and
diagnostic relations exist to establish such a relation.

The analysis of the data from ECHO 2003 and ATTO 2015 related to Eq. (6) yields the
results given in Fig. 10 for all isoprene fluxes. During ECHO 2003, the influence of
convective transport by clouds was occasionally observed and caused significant up- and
downdrafts at the main tower only 7 m above canopy top (Dlugi et al., 2014). The downward
motion was observed also for sensible and latent heat and resulted in situations with net
downward transport of isoprene (note that a covariance w'a’ is always composed of positive
(upward) and negative (downward) values of vertical wind velocity w and the corresponding
values of a during the averaging time T). The downward (negative values of w) motion was
observed to dominate in the range below 10~ 2Hz for some averaging periods T = 600 s. This
caused the cumulative (flux) covariance (the ogives) to be negative in this frequency range.
For higher frequencies the ogives were positive, which can be related to the influence of the
emission flux. Thus Fq = 0 (see Fig. 10) results from spectral compensation of upward and

downward motion (see also Fig. 12 in Dlugi at al. 2014 and the discussion on Fig. 7).

If only the upward-directed (positive) turbulent isoprene flux values from measurements near
canopy top are considered (Fig. 11), the statistical correlation with I improves. Compared to
the complete results in Fig. 10 for ECHO 2003, the coefficient of determination, Etaﬁdj,
increases from Etaj,; ~ 0.40 to Etaj,; ~ 0.56, also together with the correlation coefficient.
But still about 44% of the variance is not accounted for by the linear regression in Fig. 11
(e.g., Sachs and Hedderich, 2006). This result cannot be improved even if the other terms in
Eqg. (6) would perfectly correlate (R = 1;Eta§dj = 1) with I;. A comparable result is obtained

for on 22 November during ATTO 2015.

A negative correlation between I, and the measured isoprene flux is given in Fig. 10 or Fig.
11 and is also described by Kaser et al. (2015), but with Etaﬁdj = 0.1156 and a correlation

coefficient |R| = 0.34. Therefore, less than 12% of the variance of these data from a flight
38
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track in the ABL for the relation between I; and w'c; is described by this regression (see Fig.
S5 in Kaser et al., 2015).

The ECHO 2003 and ATTO 2015 measurements were performed near the canopy top
(z/z; = 0.03) (see: Section 2.), while the NOMADSS 2013 results are calculated from aircraft
measurements at z/z; ~ 0.4 with z; = ABL height. We applied the convective boundary layer
(CBL) scaling for fluxes (e.g., Moeng and Wyngaard, 1984; Wyngaard and Brost, 1985;
Moeng and Sullivan, 1994; Hess, 1992; Patton et al.,, 2003) to a measured mean for the
isoprene flux of about 0.1 ppb m s~ for this flight track (see Fig. S5 (supplement), Kaser et
al., 2015) and estimated a surface flux in the range of 1 — 1.3 ppb m s~1. This result agrees
to average isoprene fluxes given by Su et al. (2015) (in their Fig. S5) determined in the same

region for conditions around noon in June 2013.

To understand both findings we compare them with the results of the first studies on
balances of second moments of scalars and their relation to the mean fields of related
quantities in the ABL as presented by Stull (1988) based on research done by Lenschow et
al. (1980), André et al. (1978), Deardorff (1974), Caughey and Palmer (1979) and Zhou et al.
(1985) for virtual potential temperature 6, and by Deardorff (1974) and Lenschow et al.
(1980) for specific humidity g. These authors performed their analysis on data of day 33 of
the Wangara — experiment 1967. Further references to analysis of this kind are summarized
and discussed - for example - in Haugen (1973), Sorbjan (1989) or Garrett (1992).

The analysis of the balances of variances (ﬁ orﬁ) show that the gradient production term
GP,,, (see Eq. (11)) has maximum values at the surface. The magnitude of GP,,, decreases

with increasing height with minima around z/z; = 0.2 for q_’2 and in the interval 05 <
z/z; < 0.8 for @ during the early afternoon. As the contribution of the production term GB,,,
decreases with increasing height, the contributions of other terms in the budget increases.

Therefore, a relation between term GB,,, respectively the turbulent flux w'c;] in Eq. (11a) and

c{? is only established near the Earth surface where a certain correlation exists, but with a

3

correlation coefficient |R| < 0.77 between I; and w'c; (Fig. 10, Fig. 11).
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1234  Fig. 11 The segregation intensity, I;, (ECHO: 25 July, 2003 and ATTO: 22 November, 2015) as

1235 function of only the upward directed turbulent fluxes of isoprene. (Linear regression for ATTO
1236 2015:N =9;a = —0.023; b = —0.0742; correlation coefficient = —0.3196)
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N 1/2
With increasing height in the ABL, ¢/? (respectively o; = (cTZ) ) is also determined by the

growing influence of other terms (and even vertical advection), so that the correlation

between I; and the flux w'c{ in GP,,, decreases significantly. This agrees with the result
obtained by Kaser et al. (2015) which becomes different for fluxes measured near the top of
a forest (Fig. 10 and Fig. 11) in ECHO 2003 or ATTO 2015. As discussed in Section 3.4 the
near surface isoprene flux (Eqg. (14)) is not primarily determined by the convective (heat) flux
but by the production term (i) in Eqg. (12) and by the chemical reaction term R,,; (Eq. (13),
Fig. 2).

Although our CBL scaling - applied to the fluxes given for NOMADSS for the flight level at
z/z; = 0.4 down to the surface - yields reliable results, the fluxes of isoprene and sensible
heat given by Kaser et al. (2015) at z/z; ~ 0.4 are not significantly correlated to each other.
Note that even in the NOMADSS 2013 case (flight RF13), where free convective conditions
in the ABL around noon may exist (e.g., Su et al., 2015), the correlation between the fluxes
of sensible heat and isoprene (Etaﬁdj = 0.1781) at the mean flight level z/z; =~ 0.4 is weak
(Fig. S6 in Kaser et al., 2015), as 82% of the variance is not explained by the correlation
(e.g., Sachs and Hedderich, 2006).

The NOMADSS sensible heat flux data show dominant up- and downdrafts — as it should be
observed in a CBL — with most results in a range —0.03 < w'T’ < 0.13 K m s~*. Note that
some larger positive and negative fluxes are “excluded from fit” (Fig. S6 in Kaser et al.,
2015). If we applied the convective scaling also to estimate the mean sensible heat flux at
the surface, values around H, ~ 0.1 K ms™! are obtained, again also in agreement with
results reported by Su et al. (2015).

In addition, other observations in the CBL show that at z/z; = 0.4 the amount of downward
(negative) fluxes are between 10% to 40% (e.g., Stull, 1988; Patton et al., 2003). Su et al.
(2015) assume a relation for heat transport between entrainment flux and surface flux of 20%
as a mean value for the CBL. If a higher correlation exists between both fluxes at the
surface, this relation is reduced by downdrafts of sensible heat with increasing height in the
CBL. Therefore a correlation between I, and w'c], as found near the surface, vanishes with
increasing height in the ABL, consistent with other experimental findings and results from
modelling.
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4.2. Is there an Upper Limit for the Segregation Intensity in the OH — Isoprene
Reaction?

4.2.1 The Relation between Covariance and Product of the Means

Most results on segregation for atmospheric conditions are derived from modelling. A
selection of such results for reaction Eq. (4) and a comparison with experimental findings is
given in Table 3. Maximum values for I, near the Earth surface, respectively near canopy top

(zr = he and zz/z; < 0.05), are in the range —0.27 < I; < —0.02, if results from experiments
and LES models are considered.

Kaser et al. (2015) report on a range of I, from flight RF13 of —0.17 < I, < —0.09 and for
flight RF17 of —0.19 <[, < —0.085 at a mean flight level z; of about z./z; = 0.4. They
mention that “during flight R17, local segregation was measured as large as —0.3” and they
relate the high values to “surface heterogeneity larger than typical PBL scales’, e.g., to

source areas of this size with higher isoprene emission fluxes.

Note that with their time resolution for OH measurements of 30 s (0.033 Hz) and the mean
flight velocity of 100 m s~ they obtained one OH data point every 3 km, 17 data points for a
51 km flight leg and 34 data points for a 102 km leg. The spectral maximum of I; is given for
a time scale of about 730 s, which includes about 24 data points and corresponds to a root
mean square of about 20%.

The surface heterogeneities in the emission rates, where high values in the order of I, =
—0.3 were determined by Kaser et al. (2015), are related to surface scales larger than z;. For
the flight RF13 and z; = 2200 m, spatial scales of the order of three to six times the value of
z; may cause such high values. But for such a flight leg of about 6.6 km to 13.2 km only about
two to four (or five) data points from the OH instrument are available for the calculation of I,
which results in a root mean square larger than 47%.

For comparison, the time resolution for the analysis of the data of OH and isoprene during
ECHO 2003 and ATTO 2015 was 0.2 Hz and 0.067 Hz, respectively, leading to 120 OH data
points (respectively 40 data points) in the time intervals of 600 s, which were considered for
the analysis by Dlugi et al. (2010) and Dlugi et al. (2014), respectively, and in this study for
ATTO 2015. The root mean square error of these data sets is about 9.1% and 15.8%,
respectively.
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To introduce a higher time resolution, Kaser et al. (2015) extended the OH - spectra from
about 0.03 Hz to higher frequencies using spectra of 0; - variance and covariance, 0;1S0’,

as a surrogate of OH'ISO’. This approach is not justified a priori, because the mixing ratios of

OH and 05 are not related to each other in a 1:1 relation.

Based on this modified data set, they present a wavelet analysis for the cross spectrum of
the covariance ch’ for the wavelet scale > 80 s to show that I, maxima occur at time scales
between 500 s to 1000 s. These time scales correspond to spatial scales of about 50 km and

100 km, according to the mean flight velocity of 100 m s,

Therefore, their statement, that “an increase in isoprene flux’ — by such a strong surface
source — “should lead to an enhanced production of I, as observed in the real data sets’
(Kaser et al., 2015), is not based on conclusive results, as also described in Section 4.1. As
discussed above, this result is not surprising, because the statement supposes that the

emission flux, Eyq, is directly related to w'c] at any height in the ABL and — in addition — that

this isoprene flux significantly correlates with I,. But this relation, I = f(rd), can only exist
near the surface if the variance (and therefore ;) is mainly controlled by the term GPB,,, in
Eg. (9) and Eq. (11). At the flight level of zz/z; ~ 0.4, the low correlation found by Kaser et al.
(2015) proves that this relation is no longer valid and other terms in the balance of the
variance are of larger influence as described for heat and moisture from the analysis of
earlier studies in Stull (1988).

Kaser et al. (2015) also suggest that the covariance ch’ in Eq. (1) is directly proportional to
the product of mean mixing ratios, c; x ¢;. The only data set showing such a relationship was
presented by Dlugi et al. (2014) and is given in Fig. 12 together with an extended analysis of
ECHO 20083, data from ATTO 2015, and the values modelled by LES for the lowest layer and
inhomogeneous conditions (Ouwersloot et al., 2011). In addition, two data points from flight
RF13 and RF17 are added from Kaser et al. (2015), which are estimated from their Table 1
and Table S2 (in their supplement). For RF13 and RF17, only the mean mixing ratio of the
PTR-MS instrument measuring isoprene is used as reported in their Table S2. Therefore only
mean values of the covariances can be calculated, but not their ranges as given for I in
Table 3 (according to Table 1 of Kaser et al., 2015).
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Tab. 3 Overview of different terms of Eqg. (1) from modelling (1 — 6) and experiments (7 - 9) for the

mixing ratio; & = canopy height; z,

i

reaction ISO + OH (Sk = skewness; v = frequency; ¢

ABL — height; u, = friction velocity)
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Fig. 12 The covariance between isoprene (ISO) and OH as function of the product of their mean
values according to Eq. (1). Line a): I; = 0; line b): I, = —1.0; line ¢): I, = —0.1. The data
from Kaser et al. (2015) are for their measurements with PTR-MS (their Tables 1 and S2). The
LES Data are from Ouwersloot et al. (2011) for the lowest layers between 10m — 30m above

ground and the inhomogeneous case. The spectral extended analysis for ECHO 2003 is
described in the text.

For ECHO 2003, the spectral analysis was extended to time intervals AT = 1800 s to cover a
range of lower frequencies of up to 5.6 - 107*Hz (which includes larger spatial scales, if the
Taylor hypothesis is applied) compared to the results for the frequency interval

1.7-1073Hz < v < 0.2 Hz, as originally given by Dlugi et al. (2014) in their Fig. 8. By
increasing the time interval, the number of values for the covariance in Fig. 12 is smaller than
for the original ECHO results for AT = 600 s (Dlugi et al., 2014; Fig. 8). Note that the spectral
range given for I;(v) by Kaser et al. (2015) is for the frequency range of about 4.5 - 107*Hz <

v < 0.033 Hz, with an artificial extension to higher frequencies.

Extending the time interval for the ECHO 2003 case I, becomes larger by about 18% to 27%
as contributions of lower frequencies are added. As discussed by Dlugi et al. (2010), the
analysis for larger time intervals than 600 s was performed in the way that a symmetric linear

Sawitzki-Golay low pass filter signal was subtracted from the time series (Press et al., 1991).
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This method is different compared to the analysis for shorter time intervals but also fulfilled
the criterion for stationarity (Beier and Weber, 1992).

In Fig. 12, almost all values of the covariance from ECHO 2003 that are smaller than

c/c/ = —2.1-10"5ppb? are above the line c), which is for I; = —0.1. If one numerically fits the

original ECHO results (Dlugi et al. 2010, 2014), a relation, —cov(IS0, 0H)~(mxﬁ)n,
n > 2 is obtained. The contribution for frequencies below 1.7-1073Hz will significantly
enlarge I; (see also Fig. 13), but does not change such a relation. The result for research
flight RF13 is within this range of data from ECHO 2003. Also the results for RF17 are on the
left side of line ¢) and even agree to resulis obtained by the LES modelling study of
OQuwersloot et al. (2011) for the inhomogeneous distribution of emission sources. Here,
results for the lowest layer between 10 m to 30 m above ground are presented. No difference
is observed between modelled and observed data for this relation.

Following this non-linear relation, the segregation intensity becomes independent from the
product of mean mixing ratios with increasing covariance. For example for cov(IS0,0H) =
—7-10°ppb? one estimates by this relation a mean of about IS0 x OH =~ 2.5 - 10 *pph?, and
therefore,l; ~ —0.28, a value in the range of the maximum estimated by Butler at al. (2008)

or Kaser et al. (2015). All available data are below IS0 x OH = 4 - 10~ *ppb? (Fig. 12).

The covariance is given by Eq. (2) and leads to Eq. (3). The normalized standard deviations
0./ = 0150/1S0  and 0;/¢ = 0p/OH approach two bounds, a lower one for increasing
mixing ratios and an upper one near the detection limits (DL) for OH and isoprene (see also
Fig.6 in Dlugi at al., 2014). For example for the ECHO 2003 case and mixing ratios near DL
one obtains o;50(DL)/ISO(DL) =~ 2.6 and oyy(DL)/OH(DL) =~ 2.8. For increasing mixing
ratios oy50/180 ~ 0.5 and 6oy /0H =~ 0.25 are determined. The third term in Eq. (3) is the
correlation coefficient r,; = (IS0, OH), which increases with increasing product IS0 x OH (or
I, in Fig. 9) and approaches zero for IS0 x OH — 0 (see Fig. 7 and Fig. 8 in Dlugi et al.,
2014). Therefore, even if the product of normalized standard deviations near DL is of the
order of

0150(DL) oon(DL) ~ ~
150 /W(DL) x OoH /W(DL) ~26%x28~73,

the correlation coefficient becomes small, and therefore |I;| < 0.07 for such conditions. For
increasing mixing ratios the correlation coefficient (IS0, 0H) for ECHO 2003 is determined
to be in the range (Table 3)

46



Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1325

Atmospheric

Manuscript under review for journal Atmos. Chem. Phys. Chemistry
Discussion started: 17 May 2019 and Physics
© Author(s) 2019. CC BY 4.0 License. Discussions

1426
1427

1428
1429

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448

1449
1450
1451
1452
1453

1454
1455
1456

1457

1458
1459
1460

—0.5 < r(IS0,0H) < —0.6 < (—0.65).
For these conditions one obtains

Is =~ 1150 05 X 22200 0,6 X 0.5 X 0.25 ~ —0.075

€150 XCoH

if high mixing ratios of both reactants exist together. Therefore maxima of I, exist in between

these two limits, and obviously values of —1 <I; < —-0.35are not approached in an
atmospheric boundary layer for conditions as found during ECHO 2003, ATTO 2015 or
NOMADSS (Kaser et al., 2015). The above mentioned non-linear relation leads to an
empirical upper limit of the order of |I;| < 0.35 in the ABL, in agreement also with results from
modelling (Table 3).

4.2.2 The Relation between Segregation Intensity and Coherent Motion

The transport and mixing processes near canopy top are controlled by non-local coherent
down- and updraft eddy motion (e.g., Raupach et al., 1991, 1996; Katul et al., 1997; Cava et
al.,, 20086). The features of coherent motion can by analyzed by the cummulant expansion
method (CEM), which couples the imbalance AS, = S, — S, in the contributions of sweeps S,
and ejections S, to the turbulent flux, w'a’, of a quantity a (= u,¢;, T) to the third mixed and
non-mixed moments of this (vertically) transported quantity (e.g., Katul et al., 1997). Here S,
(w'<0,a'>0) and S, (w' > 0,a' <0) represent the quadrants Il and IV of the quadrant
principle (e.g., Antonia, 1981; Shaw, 1985) with the other two contributions by outward (S;)
and inward (S;) interactions. In this way a physical turbulent transport of isoprene variance,

w'clc!, is related to methods and concepts applied to the statistical analysis of time series

ivie

and the probability density functions for w', ¢’ and w'a’ (e.g., Nakagawa and Nezu, 1977;

Raupach, 1981; Katul et al,, 1997). The quantity w'c/c; is given in the divergence term

TT,qr Of Eq. (11b) and represents the influence of ejections S, as a normalized quantity

My, = (w'c(c}/o,02) if CEMis applied.

Dlugi et al. (2014) showed that a correlation exists between the two dominant terms of the
diagnostic equation for I; (Eq. (21)), nvar(IS0);, and RE;;, and M,; for the ECHO 2003

case. The contribution by sweeps — represented by M;, = (W’w’ci’/o‘f,oc)— shows only a
week correlation with nvar(IS0);; and RE;;. The same analysis on data from ATTO 2015
leads to a comparable result. In both experiments ejections (S,), with a time duration D,,

contribute to the flux in each time interval of ten minutes. We found D, = 34% (ECHO 2003)
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and D, =32% (ATTO 2015) if the contributions of all quadrants are considered. For the
contribution by sweeps (S,) the time duration D; is about 48% of the total time in each. In
addition, the percentage contributions of sweeps and ejections to the total flux are
comparable to their time durations and are below 100% for both experiments.

Note that the quantity w’c/c] is not given in the flux balance equation (Eq. (12)), but in the
variance balance (Eq. (9)) in the divergence term TT,,, respectively in Eq. (11a) and Eq.
(11b). Evenif terms Ap, yqr, Azvar, I @and I11'in Eq. (113, 11b) were neglected, the estimation

of the magnitude of the two remaining terms shows that neither the contribution of GB,,, nor

TTyqr t0 the magnitude of cTZ is small (Table 2). Also, this analysis shows that a simple
relation between I, and one dominant term in a balance equation or by a certain process
controlling the mixing of reactants does not exist. At least two or more processes can be
identified, which always influence I, in an indirect way, so that I, = —0.5 is not reached in the
field for such conditions. Therefore |I;| remains to be bounded below such values. In the
following we show that such bounds of I; are also in agreement with existing results from the
field and from models, if they are presented as a function of the Damkdhler number, e.g., of

relations between time scales for transport/mixing and chemical reactions.

4.3 The Damkoéhler Dependence of the Intensity of Segregation

The relation between a transport/mixing time scale t; and the chemical reaction time scale,
1. = (k; -W)_l, the Damkéhler number

Da, = Tt/rc
is commonly chosen to classify I, (e.g., Damkdhler, 1957; Astarita, 1967; Komori et al., 1991;

Verver et al., 2000; Vinuesa and Vila — Guerau de Arellano, 2005). For reaction Eq. (4) the
chemical time scale 7. is well described by the knowledge of

170
kyj ~ = 409/ |

i ppb~'s 7]

with a mean value of about k;; = 2.3 ppb~'s™" in the temperature ranges for 25 July, 2003
(DQOY 2086) of the ECHO 2003 (Dlugi et al., 2010, 2014) and 22 November of ATTO 2015
studies. The magnitude of , is often estimated by surface layer or ABL scalings (e.g., Stull,
1988; Sorbjan, 1989; Raupach, 1988). For experiments above canopies near z = h,, often a

time scale
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T, ® hC/u* (u,= friction velocity)

1
is chosen (e.g., Patton et al., 2001). For this 7,-scaling, Dlugi et al. (2014) determined Da_ in
the range 0.01 < Da,. < 0.1 for ECHO 2003. A revised analysis of the mixing conditions
inside and directly above the mixed deciduous forest was performed based on diffusion
experiments with tracer emissions at z/h, = 0.5 and z/h, ~ 0.8 during ECHO 2003. The
results are compared to the wind tunnel experiments by Aubrun et al. (2005) and show that
the diffusion time scale, 7;, (see also Koeltzsch, 1999), for mixing emissions from the leaves
at heights 0.5 < z/h, < 1 to the measuring height at z/h, = 1.23 is about three to four times
larger than 7, , e.g., 7, = 37, (to 47,,). For illustration both time scales are given for ECHO

2003 in Fig. 13, where experimental and model results are compared (Table 3).

0.00 o

0} il ® ®
005 154
: Qe
Py 4
-0.10 3o &® "
i . 3 P18 O Is(OH,I ECHO, | /h
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T 020 g Is (RF13/ RF 17) modified Da, (Tab. 1 (7))
Q [ Is Petersen, Holtslag (1999) (Tab.1 (1))
8 -0.25 * IsPatton et al. (2001) (Tab.1(2))
2] ¢ X IsVerver et al. (2000) (Tab.1 (3))
2 304 B IsVinuesa, Vila G. de A. (2005) (Tab.1 (4))
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Fig. 13 The segregation intensity for reaction Eq. (4) as function of the Damkéhler number Da, for
results given in Table 3 (numbers in brackets). (Three points from ATTO (circles) show smaller
I than expected if the other data are considered. They represent low wind conditions where
u, scaling is a questionable choice and need additional analysis)

Kaser et al. (2015) give Da, with

T = Zi/w* )
the ABL height z; divided by the convective velocity scale, w. (e.g., Stull, 1988; Garrett,
1992) for RF13 and RF17. The measurements were performed at heights near z/z; = 0.4,
and not throughout the complete ABL. Therefore, for upward-directed motion a modified
estimate with 7, = 0.4(z;/w.) is applied in Fig. 13 to present their data. Li et al. (2016)

calculated 7, as originally done by Kaser et al. (2015). They present I;- maxima for
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z/z; = 300 m/2100 m = 0.14. Therefore, with 7, = 0.14(z;/w.) their results agree to the
range of other data in Fig. 13.

The model data (Table 3; Fig. 13) of Kaser et al. (2015) are given with their complete range
for z/z; =~ 0.4 and the canopy top values for z/z; = 0.027. Their near-surface values of I, are
significantly larger than any other data for canopy top flow or surface layer conditions in the
literature (e.g., Ouwersloot et al., 2011; Vinuesa and Vila-Guerau de Arellano, 2005; Patton
et al., 2001, Kim et al., 2016). Without the model data for z/z; = 0.027, all other results agree
with a non-linear increase of I, with increasing Da,. and the existence of a limiting range of
about I, < —0.35 for 0.5 < Da, <2 (Fig. 13). This empirical result agrees also with the

numerical fit according to a power function as shown in Fig. 12.

Surface Sensible Heat Flux [K ms™]
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Fig. 14 The intensity of segregation as a function of buoyant production (BP) and the sensible heat
flux H. The dotted circle ( ¢) ) and the data points labeled a) and b) indicate the range of
results presented by Ouwersloot et al. (2011) for homogeneous (HOM) and inhomogeneous
(INHOM) source distribution on the land surface. Also the average values reported by Kaser et
al. (2015) agree with this approach if the results from our CBL scaling analysis for H are
applied. H>0.078 Kms! and BP >3-10%m? s~ ! describe the onset of convective
conditions at canopy top.

In addition, I,(IS0,0H) can be empirically related to the buoyant production, BP, and also to
the turbulent sensible heat flux, H;, near the surface (Dlugi et al., 2014). The agreement with
model results povided by Ouwersloot et al. (2011) becomes better (Fig. 14), if lower
frequency contributions are added as mentioned above (Fig. 12, 13). This spectral correction
with respect to the original ECHO results covers also the spectral range of I; given by Kaser
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et al. (2015), if the results from our CBL-scaling analysis for the sensible heat flux are applied
to their average I, values (Fig. 14). Note that the data from ECHO 2003 in the range of
BP >3-1073m? s~2 represent NO, mixing ratios below 2 ppb. The NOMADSS flights were
performed in air masses with mean NO, mixing ratios below about 0.6 ppb.

5. Summary and Conclusion

The published results from field studies on segregation and the new measurements from the
ATTO site for the reaction of isoprene with OH are discussed and compared to models.
Some statements made by Kaser et al. (2015) for their study in the ABL are compared to the
available relationships obtained from the data analysis of field studies near canopy top and in
the ABL to give a comprehensive overview and to identify possible natural limits on I based
on theoretical considerations and the data available so far.

The intensity of segregation, I;, appears to be (weakly) proportional to the isoprene flux only
near canopy top, in agreement with an analysis for other scalar quantities described in the
literature (see: Sections 3.3 and 4.1). For larger heights above the surface, this correlation
becomes small, as not only the production term GP,,, but also other terms contribute to the

budget of isoprene variance as discussed in Section 3.3 and Section 4.1. An increase of I

_—1/2
with increasing standard deviation of isoprene o; = (ci’z) is observed near canopy top and
also reported from modelling (e.g., Patton et al.,, 2001; Ouwersloot et al., 2011), but this

increase is not exclusively related to an increasing isoprene flux.

In addition, the covariance ch’ = ISO'0OH' is non-linearly related to the product of the mean

mixing ratios, ¢ x ¢; = ISO x OH. The data show an empirical relation of a power-law type
(Fig. 12). This relation points towards an upper bound for I of about |I| < 0.35 near canopy
top as well as in the ABL, a value which is most likely also related to the behavior of the
correlation coefficient r;; with increasing mixing ratios and I, (Fig. 9). Therefore, the relation
between experimentally determined ry; .., and correlation coefficients applied or determined
in model studies, 7ijmoa, |1ijexp| < |rijmoa| NE€ds further analysis. A comparable empirical
upper limit for I, = f(Da,) is obtained if experimental and model results of I, are analyzed as
function of the Damkdhler number, Da,.. The empirical upper limit |I;| < 0.35 is approached
for 0.5 < Da_ < 2. An extended analysis of the ECHO 2003 data proves that I, has significant
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contributions in the frequency range between 4.5-10"%*Hz to 1.0-10"3Hz. Therefore
absolute values of I increase by at least 15% compared to the results described by Dlugi et
al (2014) for the range 1.7 - 10"3Hz < r < 0.2 Hz. This trend is qualitatively visible in Fig. 13,
with a tendency for surface measurements with smaller |I;| than given by modelling results
that integrate over the ABL. Aircraft measurements that are also influenced by landscape
heterogenity exhibit relatively large values for I.

For the calculation of Da, the concepts applied to determine the transport/mixing time scale
need further analysis, as a simple formula like 7., = h./u. (or 7,, = z;/w,) underestimates
the time scales obtained from an analysis of diffusion experiments, at least for ECHO 2003
and qualitatively also for the ATTO site.

It can be shown that for both case studies, ECHO 2003 and ATTO 2015, the contribution of
ejections to the turbulent isoprene flux correlates with the two dominant terms nvar(I1S0);
and RE;; in the diagnostic equation for L. If in general only ejections contribute to I, for a
compound emitted by an inhomogeneous source, the magnitude of || will be proportional to
the percentage amount of ejections.

The observed increase of I; with increasing buoyant production, BP, respectively with
increasing surface sensible heat flux (Fig. 14) (Dlugi et al., 2014), is further improved if the
extended spectral analysis for ECHO 2003 is compared to results from Kaser et al. (2015)
and model data from Quwersloot et al. (2011). Here, the surface sensible heat fluxes, Hg,
were calculated from Fig. S6 in Kaser et al. (2015) by CBL scaling for fluxes, as discussed in
Section 3. Both results for the isoprene flux as well as the sensible heat flux are also
comparable to measured fluxes in the same region as described by Su et al. (2015).
Although there is no simple direct relation between I; and BP - as given by a balance
equation - higher values of I, seem to appear generally at higher BP and H, for convective

conditions.

In summary, there are still only few measurements of segregation intensity (two ground
based and one aircraft campaign), but in line with modelling studies some general
tendencies could be established. Surface measurements show mostly I less than 18 % for
10-min values. In line with the modelling studies and the aircraft measurements, by including
longer time scales (lower fregencies) or larger spatial scales, I; reaches larger values
between 10 and 20 % (some extremes up to 30 %), also in line with a spectral representation
of I; given by Kaser et al. (2015). Therefore, one could argue that I; is scale dependent for
comparable turbulent conditions with, as a hypothesis,
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|Is,homogeneous surfacel < |Is,inhomogeneous surfacel .

Some of the above findings may be particular to the considered reaction, as OH mixing ratios
are always low compared to isoprene and both compounds exhibit a similar diurnal cycle
driven by radiation (OH) and surface temperature (isoprene) which also serves to generate
convection and turbulence, This might be one reason for the limits for I; observed for this
reaction in the boundary layer.
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