000866667 001__ 866667
000866667 005__ 20240712100948.0
000866667 0247_ $$2doi$$a10.1021/acs.est.9b02422
000866667 0247_ $$2ISSN$$a0013-936X
000866667 0247_ $$2ISSN$$a1520-5851
000866667 0247_ $$2altmetric$$aaltmetric:65476432
000866667 0247_ $$2pmid$$apmid:31418557
000866667 0247_ $$2WOS$$aWOS:000487163000017
000866667 037__ $$aFZJ-2019-05746
000866667 082__ $$a333.7
000866667 1001_ $$00000-0001-9425-9520$$aLu, Keding$$b0$$eCorresponding author
000866667 245__ $$aFast Photochemistry in Wintertime Haze: Consequences for Pollution Mitigation Strategies
000866667 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2019
000866667 3367_ $$2DRIVER$$aarticle
000866667 3367_ $$2DataCite$$aOutput Types/Journal article
000866667 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1574338900_25087
000866667 3367_ $$2BibTeX$$aARTICLE
000866667 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866667 3367_ $$00$$2EndNote$$aJournal Article
000866667 520__ $$aIn contrast to summer smog, the contribution of photochemistry to the formation of winter haze in northern mid-to-high latitude is generally assumed to be minor due to reduced solar UV and water vapor concentrations. Our comprehensive observations of atmospheric radicals and relevant parameters during several haze events in winter 2016 Beijing, however, reveal surprisingly high hydroxyl radical oxidation rates up to 15 ppbv/h, which is comparable to the high values reported in summer photochemical smog and is two to three times larger than those determined in previous observations during winter in Birmingham (Heard et al. Geophys. Res. Lett. 2004, 31, (18)), Tokyo (Kanaya et al. J. Geophys. Res.: Atmos. 2007, 112, (D21)), and New York (Ren et al. Atmos. Environ. 2006, 40, 252–263). The active photochemistry facilitates the production of secondary pollutants. It is mainly initiated by the photolysis of nitrous acid and ozonolysis of olefins and maintained by an extremely efficiently radical cycling process driven by nitric oxide. This boosted radical recycling generates fast photochemical ozone production rates that are again comparable to those during summer photochemical smog. The formation of ozone, however, is currently masked by its efficient chemical removal by nitrogen oxides contributing to the high level of wintertime particles. The future emission regulations, such as the reduction of nitrogen oxide emissions, therefore are facing the challenge of reducing haze and avoiding an increase in ozone pollution at the same time. Efficient control strategies to mitigate winter haze in Beijing may require measures similar as implemented to avoid photochemical smog in summer.
000866667 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000866667 588__ $$aDataset connected to CrossRef
000866667 7001_ $$0P:(DE-Juel1)7363$$aFuchs, Hendrik$$b1
000866667 7001_ $$0P:(DE-Juel1)16326$$aHofzumahaus, Andreas$$b2
000866667 7001_ $$0P:(DE-Juel1)173726$$aTan, Zhaofeng$$b3
000866667 7001_ $$00000-0001-6161-1874$$aWang, Haichao$$b4
000866667 7001_ $$00000-0003-2383-8431$$aZhang, Lin$$b5
000866667 7001_ $$0P:(DE-Juel1)161557$$aSchmitt, Sebastian H.$$b6
000866667 7001_ $$0P:(DE-Juel1)16347$$aRohrer, Franz$$b7
000866667 7001_ $$0P:(DE-Juel1)2693$$aBohn, Birger$$b8
000866667 7001_ $$0P:(DE-Juel1)7591$$aBroch, Sebastian$$b9
000866667 7001_ $$0P:(DE-HGF)0$$aDong, Huabin$$b10
000866667 7001_ $$0P:(DE-Juel1)165645$$aGkatzelis, Georgios I.$$b11
000866667 7001_ $$0P:(DE-Juel1)161442$$aHohaus, Thorsten$$b12
000866667 7001_ $$0P:(DE-Juel1)16342$$aHolland, Frank$$b13
000866667 7001_ $$aLi, Xin$$b14
000866667 7001_ $$aLiu, Ying$$b15
000866667 7001_ $$0P:(DE-HGF)0$$aLiu, Yuhan$$b16
000866667 7001_ $$0P:(DE-Juel1)168298$$aMa, Xuefei$$b17
000866667 7001_ $$0P:(DE-Juel1)166537$$aNovelli, Anna$$b18
000866667 7001_ $$0P:(DE-Juel1)4548$$aSchlag, Patrick$$b19
000866667 7001_ $$0P:(DE-HGF)0$$aShao, Min$$b20
000866667 7001_ $$0P:(DE-HGF)0$$aWu, Yusheng$$b21
000866667 7001_ $$00000-0001-8910-5674$$aWu, Zhijun$$b22
000866667 7001_ $$0P:(DE-HGF)0$$aZeng, Limin$$b23
000866667 7001_ $$aHu, Min$$b24
000866667 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b25
000866667 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b26
000866667 7001_ $$0P:(DE-HGF)0$$aZhang, Yuanhang$$b27
000866667 773__ $$0PERI:(DE-600)1465132-4$$a10.1021/acs.est.9b02422$$gVol. 53, no. 18, p. 10676 - 10684$$n18$$p10676 - 10684$$tEnvironmental science & technology$$v53$$x1520-5851$$y2019
000866667 8564_ $$uhttps://juser.fz-juelich.de/record/866667/files/acs.est.9b02422.pdf$$yRestricted
000866667 8564_ $$uhttps://juser.fz-juelich.de/record/866667/files/acs.est.9b02422.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866667 909CO $$ooai:juser.fz-juelich.de:866667$$pVDB:Earth_Environment$$pVDB
000866667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich$$b1$$kFZJ
000866667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16326$$aForschungszentrum Jülich$$b2$$kFZJ
000866667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173726$$aForschungszentrum Jülich$$b3$$kFZJ
000866667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161557$$aForschungszentrum Jülich$$b6$$kFZJ
000866667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16347$$aForschungszentrum Jülich$$b7$$kFZJ
000866667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2693$$aForschungszentrum Jülich$$b8$$kFZJ
000866667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165645$$aForschungszentrum Jülich$$b11$$kFZJ
000866667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161442$$aForschungszentrum Jülich$$b12$$kFZJ
000866667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16342$$aForschungszentrum Jülich$$b13$$kFZJ
000866667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166537$$aForschungszentrum Jülich$$b18$$kFZJ
000866667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b25$$kFZJ
000866667 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b26$$kFZJ
000866667 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000866667 9141_ $$y2019
000866667 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000866667 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENVIRON SCI TECHNOL : 2017
000866667 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866667 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866667 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866667 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866667 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866667 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866667 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866667 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866667 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866667 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000866667 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000866667 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000866667 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENVIRON SCI TECHNOL : 2017
000866667 920__ $$lyes
000866667 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000866667 980__ $$ajournal
000866667 980__ $$aVDB
000866667 980__ $$aI:(DE-Juel1)IEK-8-20101013
000866667 980__ $$aUNRESTRICTED
000866667 981__ $$aI:(DE-Juel1)ICE-3-20101013