001     866667
005     20240712100948.0
024 7 _ |a 10.1021/acs.est.9b02422
|2 doi
024 7 _ |a 0013-936X
|2 ISSN
024 7 _ |a 1520-5851
|2 ISSN
024 7 _ |a altmetric:65476432
|2 altmetric
024 7 _ |a pmid:31418557
|2 pmid
024 7 _ |a WOS:000487163000017
|2 WOS
037 _ _ |a FZJ-2019-05746
082 _ _ |a 333.7
100 1 _ |a Lu, Keding
|0 0000-0001-9425-9520
|b 0
|e Corresponding author
245 _ _ |a Fast Photochemistry in Wintertime Haze: Consequences for Pollution Mitigation Strategies
260 _ _ |a Columbus, Ohio
|c 2019
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1574338900_25087
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In contrast to summer smog, the contribution of photochemistry to the formation of winter haze in northern mid-to-high latitude is generally assumed to be minor due to reduced solar UV and water vapor concentrations. Our comprehensive observations of atmospheric radicals and relevant parameters during several haze events in winter 2016 Beijing, however, reveal surprisingly high hydroxyl radical oxidation rates up to 15 ppbv/h, which is comparable to the high values reported in summer photochemical smog and is two to three times larger than those determined in previous observations during winter in Birmingham (Heard et al. Geophys. Res. Lett. 2004, 31, (18)), Tokyo (Kanaya et al. J. Geophys. Res.: Atmos. 2007, 112, (D21)), and New York (Ren et al. Atmos. Environ. 2006, 40, 252–263). The active photochemistry facilitates the production of secondary pollutants. It is mainly initiated by the photolysis of nitrous acid and ozonolysis of olefins and maintained by an extremely efficiently radical cycling process driven by nitric oxide. This boosted radical recycling generates fast photochemical ozone production rates that are again comparable to those during summer photochemical smog. The formation of ozone, however, is currently masked by its efficient chemical removal by nitrogen oxides contributing to the high level of wintertime particles. The future emission regulations, such as the reduction of nitrogen oxide emissions, therefore are facing the challenge of reducing haze and avoiding an increase in ozone pollution at the same time. Efficient control strategies to mitigate winter haze in Beijing may require measures similar as implemented to avoid photochemical smog in summer.
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Fuchs, Hendrik
|0 P:(DE-Juel1)7363
|b 1
700 1 _ |a Hofzumahaus, Andreas
|0 P:(DE-Juel1)16326
|b 2
700 1 _ |a Tan, Zhaofeng
|0 P:(DE-Juel1)173726
|b 3
700 1 _ |a Wang, Haichao
|0 0000-0001-6161-1874
|b 4
700 1 _ |a Zhang, Lin
|0 0000-0003-2383-8431
|b 5
700 1 _ |a Schmitt, Sebastian H.
|0 P:(DE-Juel1)161557
|b 6
700 1 _ |a Rohrer, Franz
|0 P:(DE-Juel1)16347
|b 7
700 1 _ |a Bohn, Birger
|0 P:(DE-Juel1)2693
|b 8
700 1 _ |a Broch, Sebastian
|0 P:(DE-Juel1)7591
|b 9
700 1 _ |a Dong, Huabin
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Gkatzelis, Georgios I.
|0 P:(DE-Juel1)165645
|b 11
700 1 _ |a Hohaus, Thorsten
|0 P:(DE-Juel1)161442
|b 12
700 1 _ |a Holland, Frank
|0 P:(DE-Juel1)16342
|b 13
700 1 _ |a Li, Xin
|b 14
700 1 _ |a Liu, Ying
|b 15
700 1 _ |a Liu, Yuhan
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Ma, Xuefei
|0 P:(DE-Juel1)168298
|b 17
700 1 _ |a Novelli, Anna
|0 P:(DE-Juel1)166537
|b 18
700 1 _ |a Schlag, Patrick
|0 P:(DE-Juel1)4548
|b 19
700 1 _ |a Shao, Min
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Wu, Yusheng
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Wu, Zhijun
|0 0000-0001-8910-5674
|b 22
700 1 _ |a Zeng, Limin
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Hu, Min
|b 24
700 1 _ |a Kiendler-Scharr, Astrid
|0 P:(DE-Juel1)4528
|b 25
700 1 _ |a Wahner, Andreas
|0 P:(DE-Juel1)16324
|b 26
700 1 _ |a Zhang, Yuanhang
|0 P:(DE-HGF)0
|b 27
773 _ _ |a 10.1021/acs.est.9b02422
|g Vol. 53, no. 18, p. 10676 - 10684
|0 PERI:(DE-600)1465132-4
|n 18
|p 10676 - 10684
|t Environmental science & technology
|v 53
|y 2019
|x 1520-5851
856 4 _ |u https://juser.fz-juelich.de/record/866667/files/acs.est.9b02422.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/866667/files/acs.est.9b02422.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:866667
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)7363
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)16326
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)173726
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161557
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)16347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)2693
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)165645
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)161442
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)16342
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)166537
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 25
|6 P:(DE-Juel1)4528
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 26
|6 P:(DE-Juel1)16324
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENVIRON SCI TECHNOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENVIRON SCI TECHNOL : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21