000866668 001__ 866668 000866668 005__ 20240712100956.0 000866668 0247_ $$2doi$$a10.1016/j.apr.2019.03.005 000866668 0247_ $$2Handle$$a2128/23420 000866668 0247_ $$2WOS$$aWOS:000472996900031 000866668 037__ $$aFZJ-2019-05747 000866668 1001_ $$0P:(DE-HGF)0$$aGama, C.$$b0 000866668 245__ $$aPerformance assessment of CHIMERE and EURAD-IM’ dust modules 000866668 260__ $$aBlackburn, Vic.$$bTUNCAP$$c2019 000866668 3367_ $$2DRIVER$$aarticle 000866668 3367_ $$2DataCite$$aOutput Types/Journal article 000866668 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617694187_23616 000866668 3367_ $$2BibTeX$$aARTICLE 000866668 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000866668 3367_ $$00$$2EndNote$$aJournal Article 000866668 520__ $$aThe purpose of this study is to investigate how two different atmospheric 3D modelling systems, with different dust modules, simulate a Saharan dust episode, using satellite data and in-situ observations to validate their performances. The episode occurred during 19–23 February 2016 and impacted the Iberian Peninsula. The two numerical modelling systems applied are the CHIMERE and the EURAD-IM chemistry transport models with different dust modules, both forced by the same WRF meteorological input. A common domain and resolution (27 × 27 km2) was adopted for the modelling setup. The comparison and evaluation of the two modelling results have shown that both models are able to capture the occurrence of the natural event, which was initiated by a cut-off low above the coast of Morocco, inducing a strong meridional transport of dust loaded air from Algeria straight towards eastern parts of the Iberian Peninsula. The most notable differences between the two model outputs concern the emission strengths and the emission source regions. In fact, different emission patterns and strengths are simulated by each model despite they use the same soil database, identical clay/silt/sand contribution for each soil type, and the same meteorological simulation. In general, CHIMERE simulates higher PM10, PM2.5, and dust concentrations than EURAD-IM for this event. In the South of Portugal, CHIMERE shows better agreement with observations, while in Central Portugal, EURAD-IM is closer to particle related measurements. 000866668 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0 000866668 536__ $$0G:(DE-Juel1)jicg21_20180501$$aCAMS,HITEC,ESKP, REKLIM+,UBA (jicg21_20180501)$$cjicg21_20180501$$fCAMS,HITEC,ESKP, REKLIM+,UBA$$x1 000866668 588__ $$aDataset connected to CrossRef 000866668 7001_ $$0P:(DE-Juel1)169783$$aRibeiro, I.$$b1 000866668 7001_ $$0P:(DE-Juel1)162344$$aLange, A. C.$$b2 000866668 7001_ $$0P:(DE-Juel1)171397$$aVogel, A.$$b3 000866668 7001_ $$00000-0002-0244-7231$$aAscenso, A.$$b4 000866668 7001_ $$0P:(DE-HGF)0$$aSeixas, V.$$b5 000866668 7001_ $$0P:(DE-Juel1)129194$$aElbern, H.$$b6 000866668 7001_ $$0P:(DE-HGF)0$$aBorrego, C.$$b7 000866668 7001_ $$0P:(DE-Juel1)176996$$aFriese, E.$$b8 000866668 7001_ $$00000-0001-8182-3380$$aMonteiro, A.$$b9$$eCorresponding author 000866668 773__ $$0PERI:(DE-600)2645757-X$$a10.1016/j.apr.2019.03.005$$gVol. 10, no. 4, p. 1336 - 1346$$n4$$p1336 - 1346$$tAtmospheric pollution research$$v10$$x1309-1042$$y2019 000866668 8564_ $$uhttps://juser.fz-juelich.de/record/866668/files/1-s2.0-S1309104218306020-main.pdf$$yOpenAccess 000866668 8564_ $$uhttps://juser.fz-juelich.de/record/866668/files/1-s2.0-S1309104218306020-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000866668 909CO $$ooai:juser.fz-juelich.de:866668$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire 000866668 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162344$$aForschungszentrum Jülich$$b2$$kFZJ 000866668 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171397$$aForschungszentrum Jülich$$b3$$kFZJ 000866668 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129194$$aForschungszentrum Jülich$$b6$$kFZJ 000866668 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176996$$aForschungszentrum Jülich$$b8$$kFZJ 000866668 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0 000866668 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000866668 9141_ $$y2019 000866668 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000866668 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000866668 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS POLLUT RES : 2017 000866668 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000866668 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000866668 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000866668 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000866668 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences 000866668 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000866668 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000866668 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0 000866668 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1 000866668 9801_ $$aFullTexts 000866668 980__ $$ajournal 000866668 980__ $$aVDB 000866668 980__ $$aI:(DE-Juel1)IEK-8-20101013 000866668 980__ $$aI:(DE-82)080012_20140620 000866668 980__ $$aUNRESTRICTED 000866668 981__ $$aI:(DE-Juel1)ICE-3-20101013