000866668 001__ 866668
000866668 005__ 20240712100956.0
000866668 0247_ $$2doi$$a10.1016/j.apr.2019.03.005
000866668 0247_ $$2Handle$$a2128/23420
000866668 0247_ $$2WOS$$aWOS:000472996900031
000866668 037__ $$aFZJ-2019-05747
000866668 1001_ $$0P:(DE-HGF)0$$aGama, C.$$b0
000866668 245__ $$aPerformance assessment of CHIMERE and EURAD-IM’ dust modules
000866668 260__ $$aBlackburn, Vic.$$bTUNCAP$$c2019
000866668 3367_ $$2DRIVER$$aarticle
000866668 3367_ $$2DataCite$$aOutput Types/Journal article
000866668 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617694187_23616
000866668 3367_ $$2BibTeX$$aARTICLE
000866668 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866668 3367_ $$00$$2EndNote$$aJournal Article
000866668 520__ $$aThe purpose of this study is to investigate how two different atmospheric 3D modelling systems, with different dust modules, simulate a Saharan dust episode, using satellite data and in-situ observations to validate their performances. The episode occurred during 19–23 February 2016 and impacted the Iberian Peninsula. The two numerical modelling systems applied are the CHIMERE and the EURAD-IM chemistry transport models with different dust modules, both forced by the same WRF meteorological input. A common domain and resolution (27 × 27 km2) was adopted for the modelling setup. The comparison and evaluation of the two modelling results have shown that both models are able to capture the occurrence of the natural event, which was initiated by a cut-off low above the coast of Morocco, inducing a strong meridional transport of dust loaded air from Algeria straight towards eastern parts of the Iberian Peninsula. The most notable differences between the two model outputs concern the emission strengths and the emission source regions. In fact, different emission patterns and strengths are simulated by each model despite they use the same soil database, identical clay/silt/sand contribution for each soil type, and the same meteorological simulation. In general, CHIMERE simulates higher PM10, PM2.5, and dust concentrations than EURAD-IM for this event. In the South of Portugal, CHIMERE shows better agreement with observations, while in Central Portugal, EURAD-IM is closer to particle related measurements.
000866668 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000866668 536__ $$0G:(DE-Juel1)jicg21_20180501$$aCAMS,HITEC,ESKP, REKLIM+,UBA (jicg21_20180501)$$cjicg21_20180501$$fCAMS,HITEC,ESKP, REKLIM+,UBA$$x1
000866668 588__ $$aDataset connected to CrossRef
000866668 7001_ $$0P:(DE-Juel1)169783$$aRibeiro, I.$$b1
000866668 7001_ $$0P:(DE-Juel1)162344$$aLange, A. C.$$b2
000866668 7001_ $$0P:(DE-Juel1)171397$$aVogel, A.$$b3
000866668 7001_ $$00000-0002-0244-7231$$aAscenso, A.$$b4
000866668 7001_ $$0P:(DE-HGF)0$$aSeixas, V.$$b5
000866668 7001_ $$0P:(DE-Juel1)129194$$aElbern, H.$$b6
000866668 7001_ $$0P:(DE-HGF)0$$aBorrego, C.$$b7
000866668 7001_ $$0P:(DE-Juel1)176996$$aFriese, E.$$b8
000866668 7001_ $$00000-0001-8182-3380$$aMonteiro, A.$$b9$$eCorresponding author
000866668 773__ $$0PERI:(DE-600)2645757-X$$a10.1016/j.apr.2019.03.005$$gVol. 10, no. 4, p. 1336 - 1346$$n4$$p1336 - 1346$$tAtmospheric pollution research$$v10$$x1309-1042$$y2019
000866668 8564_ $$uhttps://juser.fz-juelich.de/record/866668/files/1-s2.0-S1309104218306020-main.pdf$$yOpenAccess
000866668 8564_ $$uhttps://juser.fz-juelich.de/record/866668/files/1-s2.0-S1309104218306020-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866668 909CO $$ooai:juser.fz-juelich.de:866668$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000866668 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162344$$aForschungszentrum Jülich$$b2$$kFZJ
000866668 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171397$$aForschungszentrum Jülich$$b3$$kFZJ
000866668 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129194$$aForschungszentrum Jülich$$b6$$kFZJ
000866668 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176996$$aForschungszentrum Jülich$$b8$$kFZJ
000866668 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000866668 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000866668 9141_ $$y2019
000866668 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866668 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000866668 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS POLLUT RES : 2017
000866668 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866668 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866668 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866668 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866668 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000866668 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866668 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866668 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000866668 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000866668 9801_ $$aFullTexts
000866668 980__ $$ajournal
000866668 980__ $$aVDB
000866668 980__ $$aI:(DE-Juel1)IEK-8-20101013
000866668 980__ $$aI:(DE-82)080012_20140620
000866668 980__ $$aUNRESTRICTED
000866668 981__ $$aI:(DE-Juel1)ICE-3-20101013