001     866668
005     20240712100956.0
024 7 _ |a 10.1016/j.apr.2019.03.005
|2 doi
024 7 _ |a 2128/23420
|2 Handle
024 7 _ |a WOS:000472996900031
|2 WOS
037 _ _ |a FZJ-2019-05747
100 1 _ |a Gama, C.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Performance assessment of CHIMERE and EURAD-IM’ dust modules
260 _ _ |a Blackburn, Vic.
|c 2019
|b TUNCAP
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1617694187_23616
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The purpose of this study is to investigate how two different atmospheric 3D modelling systems, with different dust modules, simulate a Saharan dust episode, using satellite data and in-situ observations to validate their performances. The episode occurred during 19–23 February 2016 and impacted the Iberian Peninsula. The two numerical modelling systems applied are the CHIMERE and the EURAD-IM chemistry transport models with different dust modules, both forced by the same WRF meteorological input. A common domain and resolution (27 × 27 km2) was adopted for the modelling setup. The comparison and evaluation of the two modelling results have shown that both models are able to capture the occurrence of the natural event, which was initiated by a cut-off low above the coast of Morocco, inducing a strong meridional transport of dust loaded air from Algeria straight towards eastern parts of the Iberian Peninsula. The most notable differences between the two model outputs concern the emission strengths and the emission source regions. In fact, different emission patterns and strengths are simulated by each model despite they use the same soil database, identical clay/silt/sand contribution for each soil type, and the same meteorological simulation. In general, CHIMERE simulates higher PM10, PM2.5, and dust concentrations than EURAD-IM for this event. In the South of Portugal, CHIMERE shows better agreement with observations, while in Central Portugal, EURAD-IM is closer to particle related measurements.
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 0
536 _ _ |a CAMS,HITEC,ESKP, REKLIM+,UBA (jicg21_20180501)
|0 G:(DE-Juel1)jicg21_20180501
|c jicg21_20180501
|f CAMS,HITEC,ESKP, REKLIM+,UBA
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ribeiro, I.
|0 P:(DE-Juel1)169783
|b 1
700 1 _ |a Lange, A. C.
|0 P:(DE-Juel1)162344
|b 2
700 1 _ |a Vogel, A.
|0 P:(DE-Juel1)171397
|b 3
700 1 _ |a Ascenso, A.
|0 0000-0002-0244-7231
|b 4
700 1 _ |a Seixas, V.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Elbern, H.
|0 P:(DE-Juel1)129194
|b 6
700 1 _ |a Borrego, C.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Friese, E.
|0 P:(DE-Juel1)176996
|b 8
700 1 _ |a Monteiro, A.
|0 0000-0001-8182-3380
|b 9
|e Corresponding author
773 _ _ |a 10.1016/j.apr.2019.03.005
|g Vol. 10, no. 4, p. 1336 - 1346
|0 PERI:(DE-600)2645757-X
|n 4
|p 1336 - 1346
|t Atmospheric pollution research
|v 10
|y 2019
|x 1309-1042
856 4 _ |u https://juser.fz-juelich.de/record/866668/files/1-s2.0-S1309104218306020-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/866668/files/1-s2.0-S1309104218306020-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:866668
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162344
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171397
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129194
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)176996
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Tropospheric trace substances and their transformation processes
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS POLLUT RES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21