000866675 001__ 866675
000866675 005__ 20240709081811.0
000866675 0247_ $$2doi$$a10.1016/j.scitotenv.2019.05.329
000866675 0247_ $$2ISSN$$a0048-9697
000866675 0247_ $$2ISSN$$a1879-1026
000866675 0247_ $$2pmid$$apmid:31174126
000866675 0247_ $$2WOS$$aWOS:000477951900009
000866675 037__ $$aFZJ-2019-05753
000866675 082__ $$a610
000866675 1001_ $$0P:(DE-Juel1)168298$$aMa, Xuefei$$b0$$eCorresponding author
000866675 245__ $$aWinter photochemistry in Beijing: Observation and model simulation of OH and HO2 radicals at an urban site
000866675 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000866675 3367_ $$2DRIVER$$aarticle
000866675 3367_ $$2DataCite$$aOutput Types/Journal article
000866675 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1574347523_25088
000866675 3367_ $$2BibTeX$$aARTICLE
000866675 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866675 3367_ $$00$$2EndNote$$aJournal Article
000866675 520__ $$aA field campaign was conducted from November to December 2017 at the campus of Peking University (PKU) to investigate the formation mechanism of the winter air pollution in Beijing with the measurement of hydroxyl and hydroperoxyl radical (OH and HO2) with the support from comprehensive observation of trace gases compounds. The extent of air pollution depends on meteorological conditions. The daily maximum OH radical concentrations are on average 2.0 × 106 cm−3 and 1.5 × 106 cm−3 during the clean and polluted episodes, respectively. The daily maximum HO2 radical concentrations are on average 0.4 × 108 cm−3 and 0.3 × 108 cm−3 during the clean and polluted episodes, respectively (diurnal averaged for one hour bin). A box model based on RACM2-LIM1 mechanism can reproduce the OH concentrations but underestimate the HO2 concentrations by 50% during the clean episode. The OH and HO2 concentrations are underestimated by 50% and 12 folds during the polluted episode, respectively. Strong dependence on nitric oxide (NO) concentration is found for both observed and modeled HO2 concentrations, with the modeled HO2 decreasing more rapidly than observed HO2, leading to severe HO2 underestimation at higher NO concentrations. The OH reactivity is calculated from measured and modeled species and inorganic compounds (carbon monoxide (CO), NO, and nitrogen dioxide (NO2)) make up 69%–76% of the calculated OH reactivity. The photochemical oxidation rate denoted by the OH loss rate increases by 3 times from the clean to polluted episodes, indicating the strong oxidation capacity in polluted conditions. The comparison between measurements at PKU site and a suburban site from one previous study shows that chemical conditions are similar in both urban and suburban areas. Hence, the strong oxidation capacity and its potential contribution to the pollution bursts are relatively homogeneous over the whole Beijing city and its surrounding areas.
000866675 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000866675 588__ $$aDataset connected to CrossRef
000866675 7001_ $$0P:(DE-Juel1)173726$$aTan, Zhaofeng$$b1
000866675 7001_ $$00000-0001-9425-9520$$aLu, Keding$$b2
000866675 7001_ $$0P:(DE-HGF)0$$aYang, Xinping$$b3
000866675 7001_ $$0P:(DE-HGF)0$$aLiu, Yuhan$$b4
000866675 7001_ $$0P:(DE-HGF)0$$aLi, Shule$$b5
000866675 7001_ $$0P:(DE-Juel1)6775$$aLi, Xin$$b6
000866675 7001_ $$0P:(DE-HGF)0$$aChen, Shiyi$$b7
000866675 7001_ $$0P:(DE-Juel1)166537$$aNovelli, Anna$$b8
000866675 7001_ $$0P:(DE-Juel1)174162$$aCho, Changmin$$b9
000866675 7001_ $$0P:(DE-HGF)0$$aZeng, Limin$$b10
000866675 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b11
000866675 7001_ $$0P:(DE-HGF)0$$aZhang, Yuanhang$$b12
000866675 773__ $$0PERI:(DE-600)1498726-0$$a10.1016/j.scitotenv.2019.05.329$$gVol. 685, p. 85 - 95$$p85 - 95$$tThe science of the total environment$$v685$$x0048-9697$$y2019
000866675 909CO $$ooai:juser.fz-juelich.de:866675$$pVDB:Earth_Environment$$pVDB
000866675 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173726$$aForschungszentrum Jülich$$b1$$kFZJ
000866675 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6775$$aForschungszentrum Jülich$$b6$$kFZJ
000866675 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166537$$aForschungszentrum Jülich$$b8$$kFZJ
000866675 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174162$$aForschungszentrum Jülich$$b9$$kFZJ
000866675 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b11$$kFZJ
000866675 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000866675 9141_ $$y2019
000866675 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000866675 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI TOTAL ENVIRON : 2017
000866675 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866675 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866675 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866675 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866675 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866675 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866675 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866675 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866675 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866675 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000866675 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000866675 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866675 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000866675 980__ $$ajournal
000866675 980__ $$aVDB
000866675 980__ $$aI:(DE-Juel1)IEK-8-20101013
000866675 980__ $$aUNRESTRICTED
000866675 981__ $$aI:(DE-Juel1)ICE-3-20101013