000866677 001__ 866677
000866677 005__ 20210130003600.0
000866677 0247_ $$2doi$$a10.1063/1.5126082
000866677 0247_ $$2ISSN$$a0021-9606
000866677 0247_ $$2ISSN$$a1089-7690
000866677 0247_ $$2ISSN$$a1520-9032
000866677 0247_ $$2Handle$$a2128/23440
000866677 0247_ $$2pmid$$apmid:31757142
000866677 0247_ $$2WOS$$aWOS:000504060200015
000866677 0247_ $$2altmetric$$aaltmetric:71082955
000866677 037__ $$aFZJ-2019-05755
000866677 082__ $$a530
000866677 1001_ $$00000-0002-6456-9234$$aToneian, David$$b0
000866677 245__ $$aHydrodynamic correlations of viscoelastic fluids by multiparticle collision dynamics simulations
000866677 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2019
000866677 3367_ $$2DRIVER$$aarticle
000866677 3367_ $$2DataCite$$aOutput Types/Journal article
000866677 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1574348758_25086
000866677 3367_ $$2BibTeX$$aARTICLE
000866677 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866677 3367_ $$00$$2EndNote$$aJournal Article
000866677 520__ $$aThe emergent fluctuating hydrodynamics of a viscoelastic fluid modeled by the multiparticle collision dynamics (MPC) approach is studied. The fluid is composed of flexible, Gaussian phantom polymers that interact by local momentum-conserving stochastic MPCs. For comparison, the analytical solution of the linearized Navier-Stokes equation is calculated, where viscoelasticity is taken into account by a time-dependent shear relaxation modulus. The fluid properties are characterized by the transverse velocity autocorrelation function in Fourier space as well as in real space. Various polymer lengths are considered—from dumbbells to (near-)continuous polymers. Viscoelasticity affects the fluid properties and leads to strong correlations, which overall decay exponentially in Fourier space. In real space, the center-of-mass velocity autocorrelation function of individual polymers exhibits a long-time tail, independent of the polymer length, which decays as t−3/2, similar to a Newtonian fluid, in the asymptotic limit t → ∞. Moreover, for long polymers, an additional power-law decay appears at time scales shorter than the longest polymer relaxation time with the same time dependence, but negative correlations, and the polymer length dependence L−1/2. Good agreement is found between the analytical and simulation results
000866677 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000866677 588__ $$aDataset connected to CrossRef
000866677 7001_ $$00000-0002-4375-4684$$aKahl, Gerhard$$b1
000866677 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2$$eCorresponding author
000866677 7001_ $$0P:(DE-Juel1)131039$$aWinkler, Roland G.$$b3$$eCorresponding author
000866677 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.5126082$$gVol. 151, no. 19, p. 194110 -$$n19$$p194110$$tThe journal of chemical physics$$v151$$x1089-7690$$y2019
000866677 8564_ $$uhttps://juser.fz-juelich.de/record/866677/files/1.5126082.pdf$$yPublished on 2019-11-20. Available in OpenAccess from 2020-11-20.
000866677 8564_ $$uhttps://juser.fz-juelich.de/record/866677/files/1.5126082.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-11-20. Available in OpenAccess from 2020-11-20.
000866677 909CO $$ooai:juser.fz-juelich.de:866677$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866677 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b2$$kFZJ
000866677 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131039$$aForschungszentrum Jülich$$b3$$kFZJ
000866677 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000866677 9141_ $$y2019
000866677 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866677 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866677 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000866677 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2017
000866677 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866677 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866677 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866677 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866677 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866677 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866677 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866677 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000866677 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866677 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000866677 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000866677 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866677 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000866677 980__ $$ajournal
000866677 980__ $$aVDB
000866677 980__ $$aUNRESTRICTED
000866677 980__ $$aI:(DE-Juel1)IAS-2-20090406
000866677 9801_ $$aFullTexts