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ABSTRACT

The emergent fluctuating hydrodynamics of a viscoelastic fluid modeled by the multiparticle collision dynamics (MPC) approach is studied.
The fluid is composed of flexible, Gaussian phantom polymers that interact by local momentum-conserving stochastic MPCs. For comparison,
the analytical solution of the linearized Navier-Stokes equation is calculated, where viscoelasticity is taken into account by a time-dependent
shear relaxation modulus. The fluid properties are characterized by the transverse velocity autocorrelation function in Fourier space as well
as in real space. Various polymer lengths are considered—from dumbbells to (near-)continuous polymers. Viscoelasticity affects the fluid
properties and leads to strong correlations, which overall decay exponentially in Fourier space. In real space, the center-of-mass velocity
autocorrelation function of individual polymers exhibits a long-time tail, independent of the polymer length, which decays as t~>'2, similar to
a Newtonian fluid, in the asymptotic limit t - co. Moreover, for long polymers, an additional power-law decay appears at time scales shorter
than the longest polymer relaxation time with the same time dependence, but negative correlations, and the polymer length dependence L™"2.
Good agreement is found between the analytical and simulation results.

Published under license by AIP Publishing.

. INTRODUCTION

Soft matter and complex fluids are composed of a broad range
of nano- to microscale objects. Such systems are typically easily
deformable, with characteristic energies on the order of the ther-
mal energy and correspondingly long relaxation times, and entropic
degrees of freedom play an important role. ~ Paradigmatic exam-
ples of soft matter are biological cells (containing a wide range of
polymeric and colloidal ingredients "), blood, solutions of polymers,
emulsions, and suspensions of colloidal particles.”” The majority of
these suspensions are viscoelastic rather than Newtonian, combin-
ing the viscous properties of fluids with the elastic characteristics of
solids.

Computer simulations are a valuable tool for gaining insight
into the viscoelastic properties of complex fluids. © Of particular

interest are mesoscale simulation techniques, which account for
hydrodynamic interactions and are able to bridge the length- and
time-scale gap between fluid degrees of freedom and those of the
embedded (polymeric) particles. Established mesoscale tech-
niques are the lattice Boltzmann (LB) method, dissipative parti-
cle dynamics (DPD), and the multiparticle collision dynamics
approach (MPC). Viscoelasticity is incorporated in different
ways in the various simulation approaches. The LB method describes
a fluid in terms of a spatially discretized probability density, whose
dynamics progresses via the Boltzmann equation. Viscoelastic-
ity is incorporated by extending the stress tensor by a viscous-stress
contribution, e.g., the Maxwell model, and taking this stress
into account as a body force in the discretized propagation equa-
tion. In contrast, DPD and MPC are particle-based simulation
approaches, where the bare fluid is represented by point particles
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and a complex fluid by additional suspended objects such as col-
loids, polymers, membranes, or cells. In the latter approaches, vis-
coelasticity emerges as a consequence of the interactions between
the embedded objects. Examples of viscoelastic DPD simulations
are studies of blood cells”” and star polymers” in flow. For
MPC, the rheological properties of linear, branched, and star poly-
mers have been investigated, as well as those of cells and
vesicles.

Alternatively, viscoelastic fluids can be modeled by an ensem-
ble of more complex entities, directly representing a viscoelastic fluid
rather than a viscoelastic suspension. DPD and MPC viscoelastic flu-
ids can be modeled by linearly connected DPD and MPC particles,
respectively. The simplest viscoelastic unit is a dumbbell. The exten-
sion of the original DPD approach to a dumbbell fluid is presented
in Ref. 35 and to even longer polymers in Ref. 36. Similarly, the prop-
erties of MPC dumbbell fluids of different complexities are studied
in Refs. 13, 14, 37, and

This representation of a viscoelastic fluid via an ensemble of
linear elastic polymers raises a number of fundamental questions
on hydrodynamic interactions in such systems. Traditionally, it is
assumed that hydrodynamic interactions are screened in polymer
melts and that the properties of individual polymers in the melt
are well described by the Rouse model. " Screening is assumed to
emerge by the excluded-volume interactions between the polymers.
Conversely, analytical considerations show that in melts of phan-
tom polymers, i.e., polymers without excluded-volume interactions,
hydrodynamic interactions are unscreened.

Recent computer simulations and theoretical studies of unen-
tangled polymer melts including excluded-volume interactions raise
considerable doubts on these simple pictures, since the studies
show clear evidence of a long-time tail in the polymer veloc-
ity correlation function, indicative of unscreened hydrodynamic
interactions.

In this article, we study the properties of a viscoelastic fluid
by analytical calculations and simulations. Our goal is to character-
ize the properties of the viscoelastic fluid, which will ultimately be
used to study embedded objects. Analytically, we consider the lin-
earized Navier-Stokes equations with a time-dependent relaxation
modulus, i.e., an integrodifferential equation for the velocity field.
The relaxation modulus follows from the Rouse model of poly-
mer dynamics, = a special case of the generalized Maxwell model.
In simulations, we employ the MPC approach that has success-
fully been applied to study the structural and dynamical properties
of a wide range of polymeric systems. It correctly cap-
tures hydrodynamic interactions and can efficiently be paral-
lelized on various platforms, especially on graphics processing units
(GPUs).

We analyze the fluid properties in terms of velocity autocor-
relation functions. An analytical solution for the transverse velocity
autocorrelation function is conveniently obtained in Fourier space,
with respect to position, and in Laplace space, with respect to time.
Inverse Laplace transformation yields a strongly time-dependent
transverse autocorrelation function that exhibits damped oscilla-
tions. Both the damping and oscillation frequencies depend on
the relaxation times of the polymer and the wave vector. Inde-
pendent of the polymer length, the (transverse) velocity autocor-
relation function C(t) exhibits a long-time tail on large length
scales, with the time dependence t7¥2 as is well established for
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Newtonian fluids. Hence, hydrodynamic correlations deter-
mine the dynamical properties of a melt of phantom polymers on
large length scales. This is reflected in the polymer center-of-mass
diffusion coefficient that exhibits the polymer length dependence
according to the hydrodynamic Zimm model.

The article is organized as follows. Section I presents the poly-
mer model and a description of the viscoelastic fluid in terms of
a modified Navier-Stokes equation. Velocity autocorrelation func-
tions of the fluid are introduced, and their analytical solutions
are presented in Sec. IV. The dynamics of the center-of-mass of
an individual (tagged) polymer is discussed in Sec. V. Section
describes the MPC implementation, and Sec. VI presents the simu-
lation results and a comparison with theoretical predictions. Finally,
the main results and aspects of our study are summarized in Sec.

and B describe details of the calculation of inverse
Laplace transformations. illustrates the derivation of
the center-of-mass velocity autocorrelation function of a tagged
polymer.

Il. MODEL OF VISCOELASTIC FLUID
A. Polymer dynamics

We consider an ensemble of linear phantom polymers,
each composed of N monomers. The bonds between subsequent
monomers are described by the harmonic Hamiltonian,

KN71 )
H-= Y Z(h’n —ri). (1)
i1

In the stationary state, this leads to a Gaussian partition func-
tion capturing the conformational degrees of freedom of the poly-
mer.” The overdamped equation of motion for the position r;()
of monomer i, corresponding to the Rouse description of polymer
physics, " is then

10H 1
-+

—TI;. 2
Son )

fi=

Here, #i(t) is the monomer velocity at time t, kg is the Boltzmann
constant, T is the temperature, y is the friction coefficient, and I';
represent stationary, Markovian, and Gaussian random processes
with zero mean and the second moments («, f € {x, y, z}),

(Tia(£)Tip(t")) = 2kpTySi0apd(t - t'). (3)

The coefficient K in Eq.
P via K = 3kgT/P.
The solution of Eq. (2) is

is related to the mean square bond length

N-1 )
r() = ¥ 4, (06, @)
n=0

with the eigenfunctions

b —\/gcos(r:;[i—;]) (5)

and
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1 X N
Xo(t) = m;rf(t):\/;rcm. (6)

The correlation functions of the mode amplitudes y, are obtained as
(n,me[1,N-1])

lzgnm —t/1,
t)-x,,(t)) = ——— 7
LAOR M0) 4sin?(nn/2N)) ¢ @
with the relaxation times
e
n = . 8
i 12kg T sin? (nm/2N) ®

In the continuum limit N — oo, I = 0 such that L = NI remains
constant, the well-known expression

2
r - ©)

= 3m2kgTn? n2’

of the continuous Rouse model is obtained, with the Rouse relax-
ation time 1z = j/le /37t2k3 T, the friction coefficient  per length,
and the bond length (Kuhn length) I = 21,, where I, is the persistence
length.

The current formulation of the model, with K = 3kz T/, applies
to equilibrium systems only and cannot reproduce some nonequi-
librium properties, such as shear thinning. To capture such effects,
the stretching of polymer bonds by the external forces needs to be
prevented. In the case of simple shear, this is easily achieved by a
shear-dependent coefficient y(j) and the modified force coefficient
K =3 u(y)ksT/I?, where } is the shear rate. The coefficient y follows
from the inextensibility constraint 7" ((r;1-1:)?) = (N-1) 2.
More generally, the constraint ((r;;; — r:)*) = P for every bond
can be applied with a corresponding number of Lagrangian multipli-
ers. Even for dumbbells, shear thinning is obtained with this length
constraint.

B. Modified Navier-Stokes equation

The viscous properties of Newtonian fluids are described by
the Navier-Stokes equations.” In the absence of external forces, the
corresponding linearized equation for the fluid momentum is

Qav(r,t) = -Vp+nAv(r,t), (10)

ot
with the fluid velocity v(r, t) and pressure p(r, t) fields at the posi-
tion r and time ¢, the fluid mass density ¢, and the shear viscosity .
We want to consider a viscoelastic fluid composed of phantom poly-
mers (Sec. IT A). Viscoelasticity is incorporated in the Navier-Stokes
equation by the (heuristic) extension,

ov(rt) t ' NV,
En ——Vp+/0 G(t—t)Av(r,t)dt . (11)

Here, G(t) is the shear relaxation modulus, which is indepen-
dent of spatial coordinates and vanishes in the asymptotic limit
(t-t") - oo.

The relaxation modulus G(¢) for the phantom polymers of
Sec. has been determined in Ref. 10 as (¢ > 0)

Q
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N-1
G (t) = pksT 3 &2/, (12)
n=1
where ¢ is the number of polymers per volume. The latter is related
to the mass density ¢ via
e _¢
. 13
P="N"N (13)
where m is the monomer mass and ¢ is the overall monomer concen-
tration. The complete fluid relaxation modulus G(t) is, aside from
the polymer-bond contribution, determined by the ideal gas con-
tribution of the individual monomers due to their thermal motion.
Hence, we use the relaxation modulus,

N-1
G(t) = nd(t) + kT 3" 72/, (14)
n=1
Then, the Navier-Stokes equation reduces to that of a Newto-
nian fluid in the case of a monomer solution (N = 1).
The viscosity 7 of the viscoelastic fluid follows from G(t) via

1y = /w G(t)dt, (15)
0
which yields, with Eq. (9),
pkpT oyP(N° - 1)
= n = —_—. 16
T e (16)
With the density ¢ of Eq. (13), the fluid viscosity becomes
W( L )
= —|N-—| 17
(/A v: N 17)

For long polymers (N > 1) and fixed ¢, 7y is dominated by the
bond contribution (G*) and 7 is negligible. Then, the fluid viscosity
increases linearly with the degree of polymerization, N.

Ill. MESOSCALE HYDRODYNAMICS: MULTIPARTICLE
COLLISION DYNAMICS

The MPC method for the simulation of the polymer dynam-
ics proceeds in two steps—streaming and collision. In the streaming
step over a time interval h, where h is denoted as collision time,
Newton’s equations of motion for the monomers,

OH
8r,~ ’

are solved by the velocity Verlet algorithm,” with the Hamiltonian
of Eq. (1). Since we consider phantom polymers, only bond forces
contribute to the monomer dynamics. Other monomer-monomer
interactions are implemented via MPC. Here, monomers are sorted
into cubic cells of side length a, with the cells forming a complete
tiling of the simulation volume, defining the collision environment.
We apply the Stochastic Rotation Dynamics (SRD) version
of MPC,” where the relative monomer velocities, with respect to
the center-of-mass velocity of all monomers in a collision cell, are
rotated around a randomly oriented axis by a fixed angle a. This
yields the new monomer velocities,

vi(t+h) = Di(t+h) + (R(@) — E) (9i — D) (19)

m'f'i = - (18)
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where ©;(t + h) is the monomer velocity after streaming, R(«) is the
rotation matrix, E is the unit matrix, and

Ne
vin(t) = 5 L i(0) 20)

Ne &
is the center-of-mass velocity of the monomers in the cell of par-
ticle 4, with N, being the total number of monomers in that par-
ticular cell. The random orientation of the rotation axis is chosen
independently for every collision step and every collision cell. Par-
titioning of the simulation volume into collision cells implies vio-
lation of Galilean invariance. To re-establish Galilean invariance,
a random shift of the collision lattice is performed at every col-
lision step. MPC conserves mass, momentum, and energy on
the collision-cell level, which leads to correlations’”"" between the
particles and long-range hydrodynamic interactions.” To main-
tain a constant temperature, the Maxwell-Boltzmann-scaling (MBS)
thermostat is applied at every collision step and for every collision

cell.

The simulations are performed with the hybrid program
OpenMPCD,”” a software suite implementing MPC-SRD
combined with molecular dynamics simulations (MD) (velocity
Verlet algorithm™). Both the MPC and the MD part of the poly-
mer dynamics—only phantom polymers with intramolecular bond
interactions are considered—are executed in a massively paral-
lel manner on a GPU (double precision). The program exhibits
excellent performance on graphical processing units (GPUs) ™~ sup-
porting the CUDA’"" programming framework, such as NVIDIA
Tesla accelerators.

Dimensionless units are introduced by scaling length by the

cell size a, energy by kgT, and time by \/ma?/kpT. This corre-
sponds to the choice a = kT = m = 1. We choose the collision time
h = 0.1/ma?/kgT, the rotation angle « = 2.27 rad ~ 130°, and the
mean number of monomers in a collision cell (N;) = 10. The lat-
ter is equivalent to the mean fluid density ¢ = 10 m/a>. A MD time
step of At = 0.02y/ma?[kgT, smaller than the collision time step,
is used in order to resolve the polymer dynamics adequately. Three-
dimensional periodic systems are considered with a cubic simulation
box of side length Ls = 30q, if not indicated otherwise, correspond-
ing to a total number of Nyt = 2.7 x 10° monomers/MPC particle.
Simulations of a monomer fluid, i.e., a bare MPC fluid, yield the
viscosity n/v/mksT/a* = 8.7."° In the following, the units a, kgT,
and m will be dropped, i.e., are set to unity. For the results pre-
sented in Sec. V1, between 2 x 10" and 1 x 10° MPC steps have been
performed, typically approximately 4 x 107

Simulations are initialized by placing the first monomer of
every polymer at a random point in the simulation volume sam-
pled from a uniform distribution. Subsequent bound monomers
are placed by choosing a randomly oriented unit bond vector. Ini-
tial velocities of each monomer are assigned independently with
Cartesian components taken from a standard normal distribution.

IV. VELOCITY CORRELATION FUNCTION
OF VISCOELASTIC FLUID

The linear equation can be solved using Fourier and
Laplace transforms. Spatial Fourier transformation (denoted by a
tilde) of the velocity,

ARTICLE scitation.org/journallfjcp
o(kt) = / v(rt)e * &, (21)
where ©(k, t) denotes the transformed velocity, yields
T t
8”((3’;’ D _ —ikp(k,t) - K f G(t—t)o(kt)dt. (22)
0
By multiplying this equation with ©(—k, 0), we obtain
e . ]
0C (k1) __po / Gt =) (k,¢')df’ (23)
ot 0
for the transverse velocity autocorrelation function,
C'(kt) = (0" (k1) - 0" (-k,0)), (24)

where the brackets denote statistical averaging. The transverse com-
ponent ©'(k,t) is the component of the Fourier-space velocity
o(k,t) = ©*(k,t) + ©"(k,t) that is perpendicular to the Fourier
vector k, i.e., k- ©' (k,t) = 0. Laplace transformation (denoted by a
circumflex) with respect to time,

E (kys) = f T (ke t)e (25)
0
yields
Cl(kys) = M (26)
05+ K*G(s)

We assume that the system is in thermal equilibrium at t = 0,
hence,

CT(k,0)=C"(0) = 2eeT 27)
0
The Laplace transform of G(t), Eq. ,is
A =
G(s) = kgT _—, 28
(s) =+ gks 2 o (28)
and we thus obtain
T
. oC (0
CM(ks) = : ( N)_1 . (29)
k kgT
os+ (11+(p B nz::l s+2/1n)

The explicit expression C” (k, t) for the inverse Laplace transform of
this function is presented in Eq. of .

The velocity correlation function C(t) = (v(r, t) - v(r, 0)) fol-
lows by inverse Fourier and Laplace transformation. To eliminate
the spatial dependence, we average the correlation function with
the distribution function for r(z). Adopting the Lagrangian
description of the fluid, where a fluid element is followed as it moves
through space and time, we obtain, in general,

—(21)3 fC(k,t)(eik'('(t)_'(o)))d3k
T

1 . R {(r()-r(0))*)/6 g3

=—— | C(kt d’k 30
(2n) f (k. D)e (30)

due to the Gaussian nature of the displacement distribution func-

tion.© The mean square displacement (MSD), averaged over all

monomers, is

C(t) =
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(ar(£)*) = ((r(t) = 7(0))*) = 6Demt + (Ar(£)2),  (31)

where Dy = kgT/yN is the center-of-mass diffusion coefficient,
and with the results of Sec. , we obtain the average monomer
MSD in the polymer center-of-mass reference frame,

ZZ N-1 1

2\ _ b _e—t/r,,
(Ar(t)m) " 2N Z sin?(nm/(2N)) (1 ) (32)

n=1

Examples of the correlation function C(t) for various polymer
lengths are discussed in Secs. -

A. Newtonian fluid (N =1)

A Newtonian fluid is recovered for N = 1 and correspondingly
G(t) = né(t). The inverse Laplace transformation of
_ ¢

C (k,s) = , 33
(k.s) s+ kv (33)

with the kinematic viscosity v = #/g, yields the time-dependent
velocity-correlation function in Fourier space,

CT(k,t) = ET(0)e Y, (34)

With Eq. , the correlation
becomes, in the long-time

in agreement with previous studies.
function C(t) = CX(t) + C"(t) of Eq.
limit,
kgT 1
c)~Cl(t)=2- -~ 35
0~ €)= o p (35)
since the contribution of the longitudinal velocity correlation, ct (¥,
decays exponentially.

B. Dumbbell fluid (N = 2)

Polymer-like aspects are already captured by a dumbbell
(dimer)—i.e., two bound monomers—, at least as long as the longest
relaxation time of a polymer dominates its internal dynamics. Here,
Eq. assumes the form

C'(k,0) ot

C'(k,t) = Y ([T% - (] sin(wt) + wcos(wt)), (36)

with the abbreviations

(= l(z +k2v), (37)
2 1
1 2 1 2 2

w:T—\/Zk T1(vf—V)—§(k v -2)°, (38)
1

and the kinematic viscosity vy = n7/o = v + ¢kpT71/(2¢) > v. The
correlation function exhibits exponentially damped oscillations,
where both the frequency, w, and the damping, {, depend on the
relaxation time 7.

Evidently, the radicand in Eq. is always negative for v = vy.
More generally, in the case of a negative radicand, the substitution
w = i), with

N o BT
1
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yields the correlation function

C"(k,t) = Me‘“([% —(] sinh(At) +)Lcosh()tt)). (40)
1

Since { > A, we obtain a nonoscillating correlation function. Equa-
tion or Eq. clearly reveal a qualitative different dynamical
behavior due to polymer elasticity (viscoelasticity). An oscillatory
correlation function appears for vy > v only. There are two obvi-
ous limits with only exponentially decaying correlation functions,
namely, |k| = 0 and |k| — oo, which correspond to large and small
scales, respectively.

In the limit At > 1, Eq. becomes
- - I ¢ 1\ -y
C"(k,t) = C" (k0 (——— —) @, 41
(k1) = C (kO =51 73)° (1)

For |k| — 0, the difference in the exponent reduces to { — A = k*(v +
okpTT1/20) + O(k*) [Eq. ], and the correlation function decays
exponentially with the total kinematic viscosity, vy,

CT(k,t) = ET (K, 0)e %", (42)

Then, Fourier transformation with respect to k of Eq. yields a
long-time tail C” (¢) ~ (vrt) 3/ on large length and long time scales.
Conversely, on small length scales |k| — oo, the exponent becomes
(= A=2(1 +v/v)/T1 + O(1/k*) and the decay of the correlation
function depends only weakly on the wave vector. In both cases, the
decline of C* (k, t) is determined by the properties of the dumbbell
rather than the individual monomers.

provides examples of the correlation function C* (k, t)
for various wave vectors and a specific set of parameters (see the fig-
ure caption). Note that the oscillating correlation functions assume
positive and negative values. The correlation functions for the
smallest (k = 0.09) and the largest (k = 2) displayed k vector decay

S
S
= \
i) \ 7T
~ - \ .
5‘; \ y s N
e 107°) ! ‘
Q \ H .
| R \ T
077 1 9 (\ “
0 50 100 150 200

t

FIG. 1. Transverse velocity autocorrelation function C* (k, t)/C" (k, 0) of dumb-
bells [Eq. or (40)] as a function of time for the wave vectors |k| = 0.09, 0.11,
0.4, 0.8, and 2 (top to bottom). The other parameters are #=8.7, ¢ = 10, kg T =5,
and 71 = 13.4. Due to viscoelasticity, the correlation function oscillates for certain
wave vectors assuming positive (solid) and negative (dashed) values.
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exponentially according to Eq. , whereas those for in-between
k values exhibit exponentially damped oscillations, Eq. . In the
latter case, the oscillation frequency increases with increasing wave
number. The decay rates in the limit |k| — 0 and |k| — oo agree with
the values discussed above.

C. Continuous polymer (N - o)

In the case of continuous polymers, N — oo, the relaxation
modulus becomes

G(t) = nd(t) + pksT 3 e 2/, (43)

n=1

Two limiting cases can be distinguished:

(i) t/tr >» 1—The sum in Eq. is dominated by the mode
n = 1, corresponding to the dumbbell considered in Sec.
with the relaxation time 71 = 7r. Again, on large length scales,
the velocity correlation function decays exponentially with
the viscosity 7y = 5 + pkpTtr/2, where 1 can be neglected for
long polymers due to the large Rouse time.

(ii) t/tr < 1—The sum of modes in Eq. can be replaced by
an integral over n, *~ and we straightforwardly obtain

G(t) = nd(t) + "’ij\ = (44)

Laplace transformation yields

. ksTr [T
G(s):n+¢; \/2—RS, (45)

and the velocity correlation function becomes

oC’ (k,0)
kBTT[ TR ’
g+ P2E )R
os + (11+ > 2s

Inverse Laplace transformation (cf.
",

C(k,s) = (46)

) vields, neglecting

C' (k t) = CT(O)f ([ gksTry/7a/(2V20) ), (47)
with the function f(x) specified in Eq. . Hence, C” (k,t) scales
with (k**t) as already pointed out in Ref.

In the asymptotic limit of a large argument of f in Eq. , we
find

B V20CT(k,0) 1
ks Try/mTr K213/

Note that the correlation function is negative. The correlation func-
tion exhibits a long-time-tail-type time dependence ¢ that is
very different from the exponential function of Eq. for indi-
vidual monomers. Polymer elasticity completely changes the time
and wave-vector dependence of the correlation function. However,
as shown in Sec. , this does not affect the long-time-type decay
of the correlation function in real space.

C"(k,t) = (48)

ARTICLE scitation.org/journalljcp

Inserting C” (k,0) of Eq.
Eq. into Eq. , we find

and the polymer concentration of

272 1
w2l /1) K132 ?
with the abbreviation 7, = I/ (3712k3 T). Thus, the fluid correlation
function C(k,t) is independent of the polymer length in the time

interval 7; < t « 1 for long polymers (L/l > 1); it depends on the
overall monomer density only.

CT(k,t) = - (49)

D. Asymptotic behavior for t — oo

The asymptotic time dependence of the correlation function
C"(t) for t — oo follows from Eq. in the limit s — 0. Neglecting
s in the sum over modes in Eq. , the correlation function reduces
to CT(k,s) = CT(0)/(s + k*v), with the total kinematic viscosity
vr = fjy/@. Then, Fourier and Laplace transformations yield

c’(o
c'(1) = O )3 , (50)
72
8(7rvft)
independent of the polymer length. This result is consistent with
the limiting cases discussed in Secs. and and corre-

sponds to the long-time tail of simple fluids. Hence, on large
length scales and for long times, the polymer melt of phantom chains
exhibits fluid-like behavior similar to simple fluids, but with the total
viscosity 7y determined by polymer elasticity.

E. Oseen tensor-type behavior

Integration of the correlation function C”(k,t) over time
yields

oo . C'(o
T(k) = f C"(k,tydt = C" (k,0) = ¢ 2( ), (51)

0 k 1y
with the use of the definition of the Laplace transform and
Eq. .Hence, T(k) ~ 1/ k?, similar to the Oseen tensor of a Newto-

nian fluid, but with the viscosity of the polymeric fluid. Fourier
transformation with respect to k leads then to a long-range interac-
tion ~1/|r| in three-dimensional space. As a consequence, the con-
sidered viscoelastic phantom polymer melt exhibits the properties of
Newtonian fluids in terms of long-range fluid interactions.

V. CENTER-OF-MASS DYNAMICS OF INDIVIDUAL
POLYMERS

The equations of motion (2) describe the dynamics of an iso-
lated polymer exposed to thermal noise. We now consider an indi-
vidual polymer embedded in other, identical polymers, accounting
for the environment by including the convective transport velocity
following from Eq. . Hence, we set

b () = o(r) - LOH 1p
#i(t) = v(rit) ) on + yF,(t), (52)

with the fluid velocity v(ri, t) at the location of monomer i.
Considering the center-of-mass motion only, we find

1 X 1 X
Fem(t) = NZv(ri,t)+y—NZ;Fi(t) (53)

i=1
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for the position ren and velocity #cm of the center of mass of a
particular polymer.

A. Center-of-mass velocity correlation function

The center-of-mass velocity autocorrelation function is given
by (t > 0)
Com(t) = (Fem (£) - 7em (0))

N

- S S () w0, (54)

i=1 j=1

Focusing on the transverse velocity correlation function, in Fourier
representation, we obtain (cf. for details)

cr (1) = m f S(k, ) C" (k1) dk, (55)

with C” (k,t) presented in Sec.
tor

and the dynamic structure fac-

z| =
M=
M=

-
Il
—

S(k,t) = (gk-(n(r)—n(o)))

i=1

exp(—K((ri(t) - 1;(0))*)/6)  (56)

Z\‘IH
=
M=

I
—_

]
—

j
of the polymer. Note that the solution of the polymer dynamics of
Sec. yields a Gaussian distribution of the monomer-monomer
separation r; — r;, with ((r; — r;)?) = |i — j|I*, and the mean square
displacement

N-1 X .
((ri(6)-1;(0))?) = |i—j\lz+6Dm,t+6kTBT Y, rub b (1-7/™).

n=1

(57)

Strictly speaking, the mean square displacement has to be obtained
from the solution of Eq. , which includes the convective flow
field induced by neighboring polymers. However, on large length
scales and for long polymers, the most significant contribution
comes from small k values. Hence, the time dependence of the
dynamic structure factor can be neglected and the static structure
factor, S(k, 0), can be used, i.e., the relevant properties of the tracer
polymer are captured by its equilibrium structure. In general, the
term Dt can be neglected for long polymers because the kine-
matic viscosity is typically much larger than D, [cf. Eq. 1.
Our calculations confirm that these approximations apply and that
Cem(t) is essentially identical when using either S(k, t) or S(k, 0),
even for dumbbells. Consequently, the time dependence of C(t)
is completely determined by the correlation function, C(k, t), of the
viscoelastic fluid.

1. Dumbbell fluid (N = 2)

For a dumbbell, the dynamics structure factor reads
272
_ Dkt 7& _ t/m
S(k,t)=e [exp( D (1 e ))
K2 —t/n\ | ~K¥P/6
+exp(i(l—e ) e . (58)
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The correlation function C%,(#) is then obtained by evaluation of
Eq. with the correlation function C” (k, t) of Sec.

For a dumbbell, the contribution of the convective velocity in
Eq. to dynamic properties, e.g., an effective relaxation time, is
negligible as shown in Ref. 14 and the relaxation time of the Rouse
model can be used. As pointed out above, the numerical evalua-
tion of Eq. yields essentially the same correlation function when
using either S(k, t) or S(k, 0).

2. Continuous polymer (N — o)

In the limit of a continuous polymer, integration of Eq.
with the correlation function yields

8 1
\ /3l3ﬂ3¢\/?l 3/2/L

for the time interval 7; << t < 7. We take only the static structure
factor into account in deriving Eq. ,1.e, wesetf=0inEq.

As our numerical studies show, a more precise account of S(k, t)
changes the very short-time behavior of the correlation function but
does not affect the longer-time decay, which is of primary interest
here.

Evidently, the correlation function exhibits a power-
law decay t % reminiscent to the long-time tail of hydrodynam-
ics. However, the asymptotic time regime for t — oo, corre-
sponding to the long-time-tail hydrodynamics of simple fluids, is
described by Eq. . The correlation function emerges from
the polymer character of the fluid, with its nearly continuous mode
spectrum. The coupling of internal polymer dynamics leads to fluid-
like large-scale and long-time correlations. Similar dependencies on
time and polymer length, 1/+/L, have been obtained in Ref.

Cem(t) = (59)

B. Center-of-mass diffusion

The center-of-mass diffusion coefficient follows from the
center-of-mass correlation function via the relation

Lo 1 AT 3
D- 3/0 cr (f)dt = 3(2n)3NfS(k)C (k0)dk  (60)

because the integral over the longitudinal contribution of the corre-
lation function vanishes. " Evaluation of the integral with Egs.
and yields

8kpT 1

B 3v6nyy Vir’

for a continuous polymer. This is the diffusion coefficient of a
polymer in a solution of viscosity 7y (Zimm model). " Thus, our
phantom-polymer melt yields the same polymer length dependence,

(61)

i.e., 1/V/IL, as a polymer in solution. This emphasizes that hydrody-
namic interactions are fully developed and determine the diffusive
behavior.

VI. SIMULATION RESULTS, COMPARISON
WITH THEORY

A. Correlation function C7 (k, t)

In simulations, periodic boundary conditions are applied and
the monomer velocities in Fourier space are calculated as
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1 Dot —ibr
=N S vi(t)e ™ (0, (62)
tot

i=1

b(k,t)

Due to the periodic boundary conditions, the Cartesian components
ke of the wave vector k = (kx, ky, k;)" assume the values kq = 27114/L,
with ny € Z, « € {x, y, 2}, and Nt = NN, being the total num-
ber of monomers. Note that only k-values with |k| # 0 are allowed.
Here, the Fourier transformation [Eq. ] of the viscoelastic con-
tinuum is adjusted to periodic boundary conditions as described in
Ref. 60. In agreement with the results of Ref. 60, the transverse veloc-
ity correlation function of the bare MPC fluid (monomers) decays
exponentially according to Eq. with the kinematic viscosity
v=0.87.

1. Dumbbell fluid (N = 2)

Results for the transverse velocity autocorrelation function of
dumbbells of various bond lengths are displayed in . We
like to mention that accurate simulation data for long times are
rather demanding in terms of simulation time, both for viscous and
viscoelastic fluids. The correlation functions typically decay over
several orders of magnitude in the considered time range,” and
the MPC-intrinsic hydrodynamic fluctuations need to be averaged
out. Nevertheless, good agreement is obtained between theory and
simulations.

The qualitative different behavior in and is in
agreement with the theoretical expectations discussed in Sec. ,
since the radicand in Eq. is positive for [ = 1 and negative
for | = \/5 Hence, for | = 1, the correlation function decays
exponentially according to Eq. , whereas oscillations occur for
longer bonds corresponding to Eq. . By fitting the theoretical
expressions and , respectively, we find the relaxation time
71 ~ 2.8 (see also Ref. 14). This value agrees reasonably well
with the theoretical prediction 3.17 following from the relaxation
time [Eq. (8)] with the friction coefficient y = 67%qRy, where the
hydrodynamic radius of a monomer is Ry = 0.113.

Evidently, our simulations and the theoretical approach yield
long-range hydrodynamic correlations. The emergence of such cor-
relations is not unexpected, since both the MPC simulations and
the (generalized) Navier-Stokes equations conserve momentum. For
the relatively short polymer chains, Rouse-like relaxation can be
expected because Zimm-type hydrodynamics requires long poly-
mers, while the dumbbell relaxation time is only weakly affected by
“fluid” correlations.

2. Decamer fluid (N = 10)

presents simulation and theoretical results of C* (k, t)
for decamers of various bond lengths. Fitting of Eq. to the
simulations data yields the relation 7, ~ 54/* for the bond-length
dependence of the longest relaxation time. The theoretically pre-
dicted value 71 ~ 631%, according to Eq. (8), is somewhat larger, when
the hydrodynamic radius Ry = 0.113 is used. = The relaxation times
are, compared to a dumbbell fluid, longer, and only damped oscil-
lating correlation functions occur for the considered k vectors, as
expected theoretically. The comparison of and indi-
cates an increase in the frequency with increasing relaxation time,
which is in agreement with the theoretical expectations. Moreover,
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FIG. 2. Transverse velocity autocorrelation functions of dumbbells, i.e., N = 2, from
simulations (solid) and analytical theory (dashed), Egs. and (40), as functions
of time t for the bond length (a) /=1 (K = 3) and (b) I = /10 (K = 0.3). The wave
vector is, in all cases, k = (27/30, 0, 0)7. As in , the correlation function in
(b) assumes negative values (even loops). The theoretical curves are fitted to the
simulation data.

the evidently different time intervals between zeros of C” (k,t) in
reflect the presence of multiple relaxation times.

As for the dumbbell fluid, we find very good agreement between
the simulation data and the theoretical prediction over the presented
time window. In general, our results emphasize the strongly corre-
lated polymer dynamics by the momentum-conserving interaction,
i.e., long-range hydrodynamics.

B. Center-of-mass velocity correlation function
in real space

The autocorrelation function of the center-of-mass velocity
of a polymer in real space, Eq. , can be directly calculated.
For a compressible fluid, such as the MPC fluid, Ccn(t) comprises
contributions from transverse and longitudinal modes, which
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FIG. 3. Transverse velocity autocorrelation functions of decamers (N = 10) as a
function of time t from simulations (solid) and analytical theory (dashed) for the
bond lengths, (a) / = 1 (K = 3) and (b) I = /3 (K = 1). The wave vector is
k = (27130, 0, 0)". As in , the correlation functions assume negative values
(even loops). The theoretical curves are fitted to the simulation data.

cannot be simply extracted from the correlation function

determined in simulations. However, the longitudinal modes affect
the short-time behavior of C.,(t) only, since the longitudinal corre-
lation function decays exponentially " and the longer-time hydro-
dynamic properties are determined by the transverse correlation
function with its long-time tail. Hence, the correlation function
Cen(t) of the MPC fluid exhibits the correct long-time behav-
ior. Moreover, the short-time behavior of the correlation function
reflects the partitioning of space into collision cells of the MPC
approach. Hydrodynamics appears only on length scales larger than
the lattice constant a of the collision-cell lattice.”” Consequently, at
short times, t $ 5 ( ), the simulation results deviate from the
solution of the continuum Navier-Stokes equations, independent
of polymer length, as illustrated in Refs. 48, 60, and 82 for various
systems. Therefore, agreement between theory and simulations can
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|Cem (8)]

10° 10! 102
t

FIG. 4. Time dependence of the velocity autocorrelation function for polymers with
N =100 monomers and / = 1 (K = 3). The size of the simulation box is Lg = 100.
The dashed line indicates the power law t=%/2.

only be expected at longer times. This does not affect the dynamics
of embedded colloids or polymers because it is determined by the
hydrodynamic long-time tail.

The correlation function for polymers of length N = 100
and bond length [ = 1 is presented in . At t =0, Cem(0)
= 3kpT/mN, according to the equipartition theorem. (Note that this
value includes transverse and longitudinal contributions.) For short
times, i.e., for t < 1, Cem(#) reflects the discrete-time MPC procedure,
with the first collision at t = 4 = 0.1. For ¢ 2 3, the correlation function
becomes negative due to viscoelasticity, as discussed in Sec.

[Eq. ]. At longer times, the correlation function decays in a
power-law manner as |Cen (£)] ~ t'2, in agreement with the theoret-
ical expectation for the regime 1) 1 < t << Tp » 6 X 10° (cf. Sec.

). In the simulations, we did not reach the asymptotic value for t —
oo [Eq. ], where the correlation function is positive again. The
dependence t % of the correlation function emphasizes and reflects
the relevance of hydrodynamic interactions in a viscoelastic fluid of
phantom polymers.

VII. CONCLUSIONS

We have presented a polymer-based model for a viscoelastic
fluid and its implementation in a multiparticle collision dynamics
algorithm. The fluid properties have been characterized by the trans-
verse velocity autocorrelation function. The comparison between
analytical predictions, based on the Navier-Stokes equation, and
simulation results shows good agreement and, thus, confirms the
suitability of the applied implementation to describe viscoelastic
fluids.

Polymer elasticity strongly affects the velocity correlation func-
tion, C” (k, t), and leads to damped oscillations over a certain range
of wave vectors. However, for long times and large length scales
(|k| = 0), we expect and predict an exponential decay of CT(k,t)
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f 2 . . . . . . .
~ ¢ ¥t a5 a function of time, with the kinematic viscosity of the

polymeric fluid. This implies a long-time tail for the polymer center-
of-mass velocity correlation function Cem(t) ~ 732, On these scales,
the polymer melt behaves as a fluid in terms of the correlation func-
tions and, hence, exhibits hydrodynamics with the effective viscosity
11r- More interestingly, for very long polymers, an additional power-
law time regime can be identified. In the range 7; < t < 7z between
the relaxation time on the scale of a bond and the Rouse time of the
whole polymer, with a nearly continuous mode spectrum, C” (k, t)
is negative and exhibits the power-law dependence 732 rather than
an exponential decay with time. Fourier transformation of the corre-
lation function weighted by the static structure factor maintains the
time dependence such that the polymer center-of-mass correlation
function in real space shows the same time dependence. This rather
distinct behavior is a consequence of the wide spectrum of modes
and, thus, is a polymer-specific property. It reflects a strong influ-
ence of the polymer internal dynamics on the overall hydrodynamic
behavior of the fluid.

Here, we have only considered phantom polymers. Extension
to polymers with excluded-volume interactions would be interest-
ing, specifically regarding the impact of excluded-volume interac-
tions on the correlation functions. Yet, the results of Ref. 42 show
that even then the correlation function of a nonentangled poly-
mer melt exhibits a long-time tail with the decay ¢ in three
dimensions.

Our results in the presence of a hydrodynamic long-time tail
are consistent with theoretical predictions for phantom polymers.
However, as pointed out in Ref. 42, the studies of self-avoiding poly-
mers seem to contradict the widely accepted view that hydrody-
namic interactions are screened in polymer melts. = To be precise,
the statement is typically used in the context of polymer solutions,
where polymers are dissolved in a fluid, and momentum conser-
vation is assumed to be violated for the fluid due to the immobile
polymer matrix. Studies of the dynamical interplay of polymers and
fluid would be desirable for a better understanding of screening. The
presented simulation approach of polymers and fluid is very well
suited for such an endeavor.
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APPENDIX A: GENERAL INVERSE LAPLACE
TRANSFORM OF C7(k, s)

To calculate the inverse Laplace transform C” (k,t) of CT(k, 5)

of Eq. , the denominator of the right-hand side,
N-1
D(s) :Qs+k2 ?7+(pkBTZ(S+2/Tn)_1 , (A1)
p=1

ARTICLE scitation.org/journalljcp

is multiplied by W(s) = Hg;ll (s +2/1n), which yields
P(s) = D(s)W(s)

N-1N-1
= (es+nk*)W(s) + K oksT Y T](s+2/m), (A2)
e
apolynomial in s of degree (N — 1). Let Py, n=1, ..., M, be the M dis-
tinct roots of o' P(s), each of multiplicity M, so that ¥*., M, = N;
hence, P(s) = ¢ [T*_, (s = P,,)™". For W(s), which is also a polyno-
mial in s, let W, be the coefficient of s” so that W(s) = Z%;é Wps".

Then, can be written as
&k s) = 00" (k,0) Zf((s))
=T k,0 _ A3
(k,0) Z;) (s oy (A3)

Inverse Laplace transformation of the terms s" [TM_, (s — Py )™
yields

CT(k,t) N-1 M nml(Pm)tMm_l
> - w, T (M
ORI ; e A
with
-1 M M
Anml(x): A1 XnE(X—Pj) B (AS)

jEmM

Note that the degree of the polynomial of the numerator is higher
than the one of the denominator. If A(s) only has simple roots, i.e.,
M, =1 forall n, Eq. simplifies to

C'(kt) N " Put _pa-l
T (k.0) nz;)wnmzlp Hl(Pm P (A6)

j#m

APPENDIX B: INVERSE LAPLACE TRANSFORMATION
FOR CONTINUOUS POLYMER

is of the form

1 s
s+b/\/s  $P+b

The inverse Laplace-transform f(t) = £
from that of H(\/5), defined as

The correlation function

f(s) = (B1)

- [f(s); t] can be obtained

. s
H(S) = 53 + b’ (Bz)
according to
F(8) = L7 f(o)s1] = L7 [HV5)i1]
1 o 7
= el TeXp—EH(T)dT. (B3)
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Partial fraction decomposition of s* + b in H(\/s) and straightfor-
ward inverse Laplace transformation yields

1 Kt Kt . —2Kt
H(t) = 33—\/5(6 cos(wt) +/3¢" sin(wt) — e~ ), (B4)

with the abbreviations ¥ = v/b/2 and w = \/3v/b/2. Evaluation of
the integral gives, with ,

f(x) = %{erfcx(—%[l + zx/g]ﬁ)
+erfcx(—%[1 - 1\/5]\/3?) + erfcx(\/;c)}, (B5)

with x = b**t. Here, erfcx(y) is the scaled complementary error
function,

erfcx(y) = eyz(l - % /(;y e_”zdu). (B6)

We like to mention that Laplace transformation of Eq. including
1 can be performed in a similar manner.

APPENDIX C: CENTER-OF-MASS VELOCITY
AUTOCORRELATION FUNCTION—CONNECTION TO
DYNAMIC STRUCTURE FACTOR

The polymer center-of-mass correlation function is given by
[cf. Eq. ]

1 NN

Cem(t) = — >3 (w(rit) - v(r},0)). (C1)

i=1 j=1
The Fourier representation
1 g ikri(t) 3

v(rt) = (ZT)Zf'v(k,t)e Pk (C2)

yields
3 1 N, .y iker;(£) iK' r;(0) 37 537

Cem (1) = S 3 (v(kt) - v(K,0))e O PrdE

N2(2m)?

i=1 j=1

(C3)

With the definition of the fluid correlation function (©(k,t)
-0 (k',0))~8(k+ kK)C(k,t) , and the dynamic structure factor

>

_ L QRS ke (r(5)-1(0))
Sk t) = =222 e ) (C4)
N i=1 j=1
Eq. becomes
1 =T 3
CfmtzifSk,tC k. 1)k, Cs
()(271)3N (k,t)C" (k.t) (C5)
which is Eq.
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