000866680 001__ 866680
000866680 005__ 20240619092047.0
000866680 0247_ $$2doi$$a10.1021/acs.jpcb.9b08467
000866680 0247_ $$2ISSN$$a1089-5647
000866680 0247_ $$2ISSN$$a1520-5207
000866680 0247_ $$2ISSN$$a1520-6106
000866680 0247_ $$2Handle$$a2128/23995
000866680 0247_ $$2altmetric$$aaltmetric:71168159
000866680 0247_ $$2pmid$$apmid:31710813
000866680 0247_ $$2WOS$$aWOS:000508468600003
000866680 037__ $$aFZJ-2019-05758
000866680 082__ $$a530
000866680 1001_ $$0P:(DE-Juel1)171618$$aSarter, Mona$$b0
000866680 245__ $$aStrong Adverse Contribution of Conformational Dynamics to Streptavidin-Biotin Binding
000866680 260__ $$aWashington, DC$$bSoc.$$c2020
000866680 3367_ $$2DRIVER$$aarticle
000866680 3367_ $$2DataCite$$aOutput Types/Journal article
000866680 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617221145_32719
000866680 3367_ $$2BibTeX$$aARTICLE
000866680 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866680 3367_ $$00$$2EndNote$$aJournal Article
000866680 520__ $$aMolecular dynamics plays an important role for the biological function of proteins. For protein ligand interactions, changes of conformational entropy of protein and hydration layer are relevant for the binding process. Quasielastic neutron scattering (QENS) was used to investigate differences in protein dynamics and conformational entropy of ligand-bound and ligand-free streptavidin. Protein dynamics were probed both on the fast picosecond time scale using neutron time-of-flight spectroscopy and on the slower nanosecond time scale using high-resolution neutron backscattering spectroscopy. We found the internal equilibrium motions of streptavidin and the corresponding mean square displacements (MSDs) to be greatly reduced upon biotin binding. On the basis of the observed MSDs, we calculated the difference of conformational entropy ΔSconf of the protein component between ligand-bound and ligand-free streptavidin. The rather large negative ΔSconf value (−2 kJ mol–1 K–1 on the nanosecond time scale) obtained for the streptavidin tetramer seems to be counterintuitive, given the exceptionally high affinity of streptavidin–biotin binding. Literature data on the total entropy change ΔS observed upon biotin binding to streptavidin, which includes contributions from both the protein and the hydration water, suggest partial compensation of the unfavorable ΔSconf by a large positive entropy gain of the surrounding hydration layer and water molecules that are displaced during ligand binding.
000866680 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000866680 588__ $$aDataset connected to CrossRef
000866680 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000866680 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000866680 693__ $$0EXP:(DE-MLZ)SPHERES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPHERES-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eSPHERES: Backscattering spectrometer$$fNL6S$$x0
000866680 693__ $$0EXP:(DE-MLZ)TOF-TOF-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)TOF-TOF-20140101$$6EXP:(DE-MLZ)NL2au-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eTOFTOF: Cold neutron time-of-flight spectrometer $$fNL2au$$x1
000866680 7001_ $$0P:(DE-Juel1)166572$$aNiether, Doreen$$b1
000866680 7001_ $$0P:(DE-Juel1)132009$$aKönig, Bernd$$b2$$ufzj
000866680 7001_ $$0P:(DE-HGF)0$$aLohstroh, Wiebke$$b3
000866680 7001_ $$0P:(DE-Juel1)131056$$aZamponi, Michaela$$b4
000866680 7001_ $$0P:(DE-HGF)0$$aJalarvo, Niina H.$$b5
000866680 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b6
000866680 7001_ $$0P:(DE-Juel1)131961$$aFitter, Jörg$$b7$$eCorresponding author
000866680 7001_ $$0P:(DE-Juel1)140278$$aStadler, Andreas M.$$b8$$eCorresponding author
000866680 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.9b08467$$gp. acs.jpcb.9b08467$$n2$$p324-335$$tThe journal of physical chemistry <Washington, DC> / B$$v124$$x1089-5647$$y2020
000866680 8564_ $$uhttps://juser.fz-juelich.de/record/866680/files/QENS_Streptavidin_Revision.pdf$$yPublished on 2019-11-11. Available in OpenAccess from 2020-11-11.
000866680 8564_ $$uhttps://juser.fz-juelich.de/record/866680/files/acs.jpcb.9b08467.pdf$$yRestricted
000866680 8564_ $$uhttps://juser.fz-juelich.de/record/866680/files/acs.jpcb.9b08467.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866680 909CO $$ooai:juser.fz-juelich.de:866680$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000866680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171618$$aForschungszentrum Jülich$$b0$$kFZJ
000866680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166572$$aForschungszentrum Jülich$$b1$$kFZJ
000866680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132009$$aForschungszentrum Jülich$$b2$$kFZJ
000866680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131056$$aForschungszentrum Jülich$$b4$$kFZJ
000866680 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
000866680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b6$$kFZJ
000866680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131961$$aForschungszentrum Jülich$$b7$$kFZJ
000866680 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140278$$aForschungszentrum Jülich$$b8$$kFZJ
000866680 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000866680 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000866680 9141_ $$y2020
000866680 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866680 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866680 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000866680 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866680 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866680 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866680 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866680 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866680 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866680 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2017
000866680 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866680 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866680 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866680 920__ $$lyes
000866680 9201_ $$0I:(DE-Juel1)ICS-5-20110106$$kICS-5$$lMolekulare Biophysik$$x0
000866680 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie$$x1
000866680 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x2
000866680 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x3
000866680 9201_ $$0I:(DE-Juel1)JCNS-SNS-20110128$$kJCNS-SNS$$lJCNS-SNS$$x4
000866680 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung$$x5
000866680 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x6
000866680 9801_ $$aFullTexts
000866680 980__ $$ajournal
000866680 980__ $$aVDB
000866680 980__ $$aI:(DE-Juel1)ICS-5-20110106
000866680 980__ $$aI:(DE-Juel1)ICS-3-20110106
000866680 980__ $$aI:(DE-Juel1)ICS-6-20110106
000866680 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000866680 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000866680 980__ $$aI:(DE-Juel1)ICS-1-20110106
000866680 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000866680 980__ $$aUNRESTRICTED
000866680 981__ $$aI:(DE-Juel1)IBI-6-20200312
000866680 981__ $$aI:(DE-Juel1)ER-C-3-20170113
000866680 981__ $$aI:(DE-Juel1)IBI-7-20200312
000866680 981__ $$aI:(DE-Juel1)IBI-8-20200312
000866680 981__ $$aI:(DE-Juel1)JCNS-1-20110106